Helical growth

Last updated
A natural left-handed helix seen in a tendril of a climber plant. Tendrils often show helix reversals. DirkvdM natural spiral.jpg
A natural left-handed helix seen in a tendril of a climber plant. Tendrils often show helix reversals.

Helical growth is when cells or organs expand, resulting in helical shaped cells or organs and typically including the breakage of symmetry. This is seen in fungi, algae, and other higher plant cells or organs. [1] Helical growth can occur naturally, such as in tendrils or in twining plants. Asymmetry can be caused by changes in pectin or through mutation and result in left- or right-handed helices. [2] [3] [4] Tendril perversion, during which a tendril curves in opposite directions at each end, is seen in many cases. [5] The helical growth of twining plants is based on the circumnutational movement, or circular growth, of stems. Most twining plans have right-handed helices regardless of the plant's growth hemisphere. [6]

Helical growth in single cells, such as the fungi genus Phycomyces or the algae genus Nitella , is thought to be caused by a helical arrangement of structural biological material in the cell wall. [7] In mutant thale cress, helical growth is seen at the organ level. Analysis strongly suggests that cortical microtubules have an important role in controlling the direction of organ expansion. [8] It is unclear how helical growth mutations affect thale cress cell wall assembly.

When seen in spiral3, a conserved GRIP1 gene, a missense mutation causes a left-handed helical organization of cortical microtubules and a severe right-hand helical growth. This mutation compromises interactions between proteins GCP2 and GCP3 in yeast. While the efficiency of microtubule dynamics and nucleation were not noticeably affected, cortical microtubule angles were less narrow and more widely distributed. [9]

Related Research Articles

<span class="mw-page-title-main">Alpha helix</span> Type of secondary structure of proteins

The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues earlier along the protein sequence.

<span class="mw-page-title-main">Cytoskeleton</span> Network of filamentous proteins that forms the internal framework of cells

The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is composed of similar proteins in the various organisms. It is composed of three main components, microfilaments, intermediate filaments and microtubules, and these are all capable of rapid growth or disassembly dependent on the cell's requirements.

<span class="mw-page-title-main">Helix</span> Space curve that winds around a line

A helix is a shape like a corkscrew or spiral staircase. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is formed as two intertwined helices, and many proteins have helical substructures, known as alpha helices. The word helix comes from the Greek word ἕλιξ, "twisted, curved". A "filled-in" helix – for example, a "spiral" (helical) ramp – is a surface called helicoid.

<span class="mw-page-title-main">Tendril</span> Specialisation of plant parts used to climb or bind

In botany, a tendril is a specialized stem, leaf or petiole with a threadlike shape used by climbing plants for support and attachment, as well as cellular invasion by parasitic plants such as Cuscuta. There are many plants that have tendrils; including sweet peas, passionflower, grapes and the Chilean glory-flower. Tendrils respond to touch and to chemical factors by curling, twining, or adhering to suitable structures or hosts. Tendrils vary greatly in size from a few centimeters up to 27 inches for Nepenthes harryana The chestnut vine can have tendrils up to 20.5 inches in length. Normally there is only one simple or branched tendril at each node, but the aardvark cucumber can have as many as eight.

<span class="mw-page-title-main">Intermediate filament</span> Cytoskeletal structure

Intermediate filaments (IFs) are cytoskeletal structural components found in the cells of vertebrates, and many invertebrates. Homologues of the IF protein have been noted in an invertebrate, the cephalochordate Branchiostoma.

Pachygyria is a congenital malformation of the cerebral hemisphere. It results in unusually thick convolutions of the cerebral cortex. Typically, children have developmental delay and seizures, the onset and severity depending on the severity of the cortical malformation. Infantile spasms are common in affected children, as is intractable epilepsy.

Katanin is a microtubule-severing AAA protein. It is named after the Japanese sword called a katana. Katanin is a heterodimeric protein first discovered in sea urchins. It contains a 60 kDa ATPase subunit, encoded by KATNA1, which functions to sever microtubules. This subunit requires ATP and the presence of microtubules for activation. The second 80 kDA subunit, encoded by KATNB1, regulates the activity of the ATPase and localizes the protein to centrosomes. Electron microscopy shows that katanin forms 14–16 nm rings in its active oligomerized state on the walls of microtubules.

<span class="mw-page-title-main">Cell cortex</span> Layer on the inner face of a cell membrane

The cell cortex, also known as the actin cortex, cortical cytoskeleton or actomyosin cortex, is a specialized layer of cytoplasmic proteins on the inner face of the cell membrane. It functions as a modulator of membrane behavior and cell surface properties. In most eukaryotic cells lacking a cell wall, the cortex is an actin-rich network consisting of F-actin filaments, myosin motors, and actin-binding proteins. The actomyosin cortex is attached to the cell membrane via membrane-anchoring proteins called ERM proteins that plays a central role in cell shape control. The protein constituents of the cortex undergo rapid turnover, making the cortex both mechanically rigid and highly plastic, two properties essential to its function. In most cases, the cortex is in the range of 100 to 1000 nanometers thick.

<span class="mw-page-title-main">Preprophase</span> Cell cycle phase only found in plants

Preprophase is an additional phase during mitosis in plant cells that does not occur in other eukaryotes such as animals or fungi. It precedes prophase and is characterized by two distinct events:

  1. The formation of the preprophase band, a dense microtubule ring underneath the plasma membrane.
  2. The initiation of microtubule nucleation at the nuclear envelope.
<span class="mw-page-title-main">Doublecortin</span> Protein-coding gene in humans

Neuronal migration protein doublecortin, also known as doublin or lissencephalin-X is a protein that in humans is encoded by the DCX gene.

<span class="mw-page-title-main">Nutation (botany)</span> Term in botany

Nutation refers to the bending movements of stems, roots, leaves and other plant organs caused by differences in growth in different parts of the organ. Circumnutation refers specifically to the circular movements often exhibited by the tips of growing plant stems, caused by repeating cycles of differences in growth around the sides of the elongating stem. Nutational movements are usually distinguished from 'variational' movements caused by temporary differences in the water pressure inside plant cells (turgor).

<span class="mw-page-title-main">Cellulose synthase (UDP-forming)</span> Cellulose synthesizing enzyme in plants and bacteria

The UDP-forming form of cellulose synthase is the main enzyme that produces cellulose. Systematically, it is known as UDP-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase in enzymology. It catalyzes the chemical reaction:

<span class="mw-page-title-main">Tendril perversion</span> Tendency of a coil to split into two or more parts of opposite chirality

Tendril perversion is a geometric phenomenon sometimes observed in helical structures in which the direction of the helix transitions between left-handed and right-handed. Such a reversal of chirality is commonly seen in helical plant tendrils and telephone handset cords.

<span class="mw-page-title-main">Demecolcine</span> Chemical compound

Demecolcine is a drug used in chemotherapy. It is closely related to the natural alkaloid colchicine with the replacement of the acetyl group on the amino moiety with methyl, but it is less toxic. It depolymerises microtubules and limits microtubule formation, thus arresting cells in metaphase and allowing cell harvest and karyotyping to be performed.

Symmetry breaking in biology is the process by which uniformity is broken, or the number of points to view invariance are reduced, to generate a more structured and improbable state. Symmetry breaking is the event where symmetry along a particular axis is lost to establish a polarity. Polarity is a measure for a biological system to distinguish poles along an axis. This measure is important because it is the first step to building complexity. For example, during organismal development, one of the first steps for the embryo is to distinguish its dorsal-ventral axis. The symmetry-breaking event that occurs here will determine which end of this axis will be the ventral side, and which end will be the dorsal side. Once this distinction is made, then all the structures that are located along this axis can develop at the proper location. As an example, during human development, the embryo needs to establish where is ‘back’ and where is ‘front’ before complex structures, such as the spine and lungs, can develop in the right location. This relationship between symmetry breaking and complexity was articulated by P.W. Anderson. He speculated that increasing levels of broken symmetry in many-body systems correlates with increasing complexity and functional specialization. In a biological perspective, the more complex an organism is, the higher number of symmetry-breaking events can be found.

<span class="mw-page-title-main">KIF1A</span> Motor protein in humans

Kinesin-like protein KIF1A, also known as axonal transporter of synaptic vesicles or microtubule-based motor KIF1A, is a protein that in humans is encoded by the KIF1A gene.

<span class="mw-page-title-main">Chirality</span> Difference in shape from a mirror image

Chirality is a property of asymmetry important in several branches of science. The word chirality is derived from the Greek χειρ (kheir), "hand", a familiar chiral object.

The XMAP215/Dis1 family is a highly conserved group of microtubule-associated proteins (MAPs) in eukaryotic organisms. These proteins are unique MAPs because they primarily interact with the growing-end (plus-end) of microtubules. This special property classifies this protein family as plus-end tracking proteins (+TIPs).

<span class="mw-page-title-main">Neurotubule</span>

Neurotubules are microtubules found in neurons in nervous tissues. Along with neurofilaments and microfilaments, they form the cytoskeleton of neurons. Neurotubules are undivided hollow cylinders that are made up of tubulin protein polymers and arrays parallel to the plasma membrane in neurons. Neurotubules have an outer diameter of about 23 nm and an inner diameter, also known as the central core, of about 12 nm. The wall of the neurotubules is about 5 nm in width. There is a non-opaque clear zone surrounding the neurotubule and it is about 40 nm in diameter. Like microtubules, neurotubules are greatly dynamic and the length of them can be adjusted by polymerization and depolymerization of tubulin.

<span class="mw-page-title-main">Alain Goriely</span> Belgian mathematician

Alain Goriely is a Belgian mathematician, currently holding the statutory professorship (chair) of mathematical modelling at the University of Oxford, Mathematical Institute. He is director of the Oxford Centre for Industrial Mathematics (OCIAM), of the International Brain and Mechanics Lab (IBMTL) and Professorial Fellow at St Catherine's College, Oxford. At the Mathematical Institute, he was the director of external relations and public engagement, from 2013 until 2022, initiating the Oxford Mathematics series of public lectures. In 2022, he was elected to the Royal Society.

References

  1. Wada, Hirofumi (2012-09-19). "Hierarchical Helical Order in the Twisted Growth of Plant Organs". Physical Review Letters. 109 (12): 128104. doi:10.1103/PhysRevLett.109.128104.
  2. Saffer, Adam M.; Carpita, Nicholas C.; Irish, Vivian F. (2017). "Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation". Current Biology. 27 (15): 2248-2259.E4. doi: 10.1016/j.cub.2017.06.032 .
  3. Hathaway, Bill (2017-07-20). "The secret of why plants grow to the right or left". Yale University. Retrieved 2022-08-04.
  4. Goriely, A.; Tabor, M. (1998). "Spontaneous helix-hand reversal and tendril perversion in climbing plants". Physical Review Letters. 80 (7): 1564. Bibcode:1998PhRvL..80.1564G. doi:10.1103/physrevlett.80.1564.
  5. Goriely, Alain (2013). "Inversion, Rotation, and Perversion in Mechanical Biology: From Microscopic Anisotropy to Macroscopic Chirality" (PDF). p. 9.
  6. Edwards, Will; Moles, Angela T.; Franks, Peter (2007). "The global trend in plant twining direction". Global Ecology and Biogeography. 16 (6): 795–800. doi:10.1111/j.1466-8238.2007.00326.x.
  7. Roelofsen, P.A. (1965). "Ultrastructure of the wall in growing cells and its relation to the direction of growth". Advances in Botanical Research. 2: 69–149. doi:10.1016/s0065-2296(08)60250-5. ISBN   9780120059027.
  8. Hashimoto, T. (2002). "Molecular genetic analysis of left-right handedness in plants". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 357 (1422): 799–808. doi:10.1098/rstb.2002.1088. PMC   1692985 . PMID   12079675.
  9. Nakamura, Masayoshi; Hashimoto, Takashi (2009-07-01). "A mutation in the Arabidopsis γ-tubulin-containing complex causes helical growth and abnormal microtubule branching". Journal of Cell Science. 122 (13): 2208–2217. doi: 10.1242/jcs.044131 . ISSN   0021-9533. PMID   19509058.