Heliorapha

Last updated

Heliorapha
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Stramenopiles
Phylum: Gyrista
Subphylum: Ochrophytina
Class: Raphidomonadea
Order: Actinophryida
Suborder: Actinophryina
Family: Helioraphidae
Cavalier-Smith, 2013 [1]
Genus: Heliorapha
Cavalier-Smith, 2013 [1]
Species:
H. azurina
Binomial name
Heliorapha azurina
(Patterson, 2001) Cavalier-Smith, 2013 [1]
Synonyms
Ciliophrys azurina
Patterson, 2001 [2]

Heliorapha is a genus of heliozoan protists, amoeboid eukaryotes with stiff axopodia radiating from their cells. [2] [3] It contains one species, Heliorapha azurina (previously Ciliophrys azurina). It is classified within a monotypic family Helioraphidae inside the actinophryids, a group of heliozoa that belong to the Ochrophyta along with other protists such as diatoms and brown algae. [1]

Contents

Morphology

Heliorapha azurina is a heliozoan, a unicellular protist with tapering arms called axopodia sustained by axonemes. Cells of H. azurina have a large, prominent cell nucleus containing a central nucleolus surrounded by peripheral clumps of heterochromatin. The cell body measures 15 μm in diameter, with radiating arms that contain extrusomes. Each cell has a single flagellum that appears at the front of swimming cells or, in non-swimming cells (i.e. during feeding), appears tightly curled, typically in a double "8" shape. Both its large size and the length and shape of its flagellum make it similar to Actinophrys , specifically A. pontica . [2]

Ecology

Heliorapha azurina is a heterotrophic flagellate exclusively found in tropical climates, in both marine and terrestrial habitats. [4] It was isolated from Darwin, Northern Territory, Australia, where it was observed consuming diatoms. [2] It is present in intertidal sediments and surface waters of Darwin. [5] It has also been observed in Ascension Island. [6]

Systematics

Heliorapha azurina is a species previously assigned to the genus Ciliophrys of the Pedinellales, a heliozoan order assigned to Dictyochophyceae, a class of ochrophytes. It was created in 2001 by biologist David J. Patterson to describe cells collected in 1994 from East Point and Lee Point, Darwin, Northern Territory, Australia. In its initial publication, H. azurina (then Ciliophrys azurina) was considered an "evolutionary link" between the Pedinellales and the order Actinophryida, on the basis of presenting traits previously thought as exclusive to each order. [2]

The species differs from Ciliophrys by the presence of tapering axopodia that are too broad at the base to be sustained solely by a triad of microtubules, a characteristic of Pedinellales. This incorrect assignment to the Pedinellales was approached in 2013, when protozoologist Thomas Cavalier-Smith moved the species to its own genus Heliorapha and family Helioraphidae. The family is currently assigned to the Actinophryida, in a suborder known as Actinophryina which unites both Helioraphidae and Actinophryidae. [1]

Related Research Articles

<span class="mw-page-title-main">Actinophryid</span> Order of heliozoan protists

The actinophryids are an order of heliozoa, a polyphyletic array of stramenopiles, having a close relationship with pedinellids and Ciliophrys. They are common in fresh water and occasionally found in marine and soil habitats. Actinophryids are unicellular and roughly spherical in shape, with many axopodia that radiate outward from the cell body. Axopodia are a type of pseudopodia that are supported by hundreds of microtubules arranged in interlocking spirals and forming a needle-like internal structure or axoneme. Small granules, extrusomes, that lie under the membrane of the body and axopodia capture flagellates, ciliates and small metazoa that make contact with the arms.

<span class="mw-page-title-main">Flagellate</span> Group of protists with at least one whip-like appendage

A flagellate is a cell or organism with one or more whip-like appendages called flagella. The word flagellate also describes a particular construction characteristic of many prokaryotes and eukaryotes and their means of motion. The term presently does not imply any specific relationship or classification of the organisms that possess flagella. However, the term "flagellate" is included in other terms which are more formally characterized.

<span class="mw-page-title-main">Stramenopile</span> Clade of eukaryotes

The Stramenopiles, also called Heterokonts, are a clade of organisms distinguished by the presence of stiff tripartite external hairs. In most species, the hairs are attached to flagella, in some they are attached to other areas of the cellular surface, and in some they have been secondarily lost. Stramenopiles represent one of the three major clades in the SAR supergroup, along with Alveolata and Rhizaria.

<span class="mw-page-title-main">Pedinellales</span> Order of single-celled organisms

Pedinellales is a group of single-celled algae found in both marine environments and freshwater.

<span class="mw-page-title-main">Axodine</span> Class of single-celled organisms

The axodines are a group of unicellular stramenopiles that includes silicoflagellate and rhizochromulinid algae, actinomonad heterotrophic flagellates and actinophryid heliozoa. Alternative classifications treat the dictyochophytes as heterokont algae, or as Chrysophyceae. Other overlapping taxonomic concepts include the Actinochrysophyceae, Actinochrysea or Dictyochophyceae sensu lato. The grouping was proposed on the basis of ultrastructural similarities, and is consistent with subsequent molecular comparisons.

<span class="mw-page-title-main">Heliozoa</span> Phylum of protists with spherical bodies

Heliozoa, commonly known as sun-animalcules, are microbial eukaryotes (protists) with stiff arms (axopodia) radiating from their spherical bodies, which are responsible for their common name. The axopodia are microtubule-supported projections from the amoeboid cell body, and are variously used for capturing food, sensation, movement, and attachment. They are similar to Radiolaria, but they are distinguished from them by lacking central capsules and other complex skeletal elements, although some produce simple scales and spines. They may be found in both freshwater and marine environments.

<i>Actinophrys</i> Family of heliozoan protists

Actinophrys is a genus of heliozoa, amoeboid unicellular organisms with many axopodial filaments that radiate out of their cell. It contains one of the most common heliozoan species, Actinophrys sol. It is classified within the monotypic family Actinophryidae.

<i>Stephanopogon</i> Genus of flagellate marine protozoan

Stephanopogon is a genus of flagellated marine protist that superficially resembles a ciliate.

<span class="mw-page-title-main">Telonemia</span> Phylum of single-celled organisms

Telonemia is a phylum of microscopic eukaryotes commonly known as telonemids. They are unicellular free-living flagellates with a unique combination of cell structures, including a highly complex cytoskeleton unseen in other eukaryotes.

<span class="mw-page-title-main">Ochrophyte</span> Phylum of algae

Ochrophytes, also known as heterokontophytes or stramenochromes, are a group of algae. They are the photosynthetic stramenopiles, a group of eukaryotes, organisms with a cell nucleus, characterized by the presence of two unequal flagella, one of which has tripartite hairs called mastigonemes. In particular, they are characterized by photosynthetic organelles or plastids enclosed by four membranes, with membrane-bound compartments called thylakoids organized in piles of three, chlorophyll a and c as their photosynthetic pigments, and additional pigments such as β-carotene and xanthophylls. Ochrophytes are one of the most diverse lineages of eukaryotes, containing ecologically important algae such as brown algae and diatoms. They are classified either as phylum Ochrophyta or Heterokontophyta, or as subphylum Ochrophytina within phylum Gyrista. Their plastids are of red algal origin.

<i>Actinosphaerium</i> Genus of heliozoan protists

Actinosphaerium is a genus of heliozoa, amoeboid unicellular organisms with many axopodial filaments that radiate out of their cell. It is classified within the monotypic family Actinosphaeriidae and suborder Actinosphaerina. Species of Actinophrys are distinguished by their large number of nuclei in each cell. Their axopodia sometimes terminate on the surface of nuclei. Vacuoles are abundant in the periphery of the cytoplasm.

<i>Kiitoksia</i> Genus of aquatic organisms

Kiitoksia is a genus of aquatic protist. The taxonomic position of the genus is still uncertain and it has not found a robust location in any subgroup.

Mantamonads are a group of free-living heterotrophic flagellates that move primarily by gliding on surfaces. They are classified as one genus Mantamonas in the monotypic family Mantamonadidae, order Mantamonadida and class Glissodiscea. Previously, they were classified in Apusozoa as sister of the Apusmonadida on the basis of rRNA analyses. However, mantamonads are currently placed in CRuMs on the basis of phylogenomic analyses that identify their closest relatives as the Diphylleida and Rigifilida.

<span class="mw-page-title-main">Ultrastructural identity</span>

Ultrastructural identity is a concept in biology. It asserts that evolutionary lineages of eukaryotes in general and protists in particular can be distinguished by complements and arrangements of cellular organelles. These ultrastructural components can be visualized by electron microscopy.

Tetrahelia is a genus of four-ciliated protists belonging to the Endohelea, a group of heterotrophic eukaryotes previously considered heliozoa. It is the only genus in the family Tetraheliidae and order Axomonadida. It is a monotypic genus, containing the sole species Tetrahelia pterbica, previously classified as Tetradimorpha.

Commation is a genus of marine heterotrophic protists closely related to the actinophryids. It contains two species, Commation cryoporinum and Commation eposianum, discovered in antarctic waters and described in 1993. Currently, the genus is classified within a monotypic family Commatiidae and order Commatiida. Along with the photosynthetic raphidophytes, these organisms compose the class of stramenopiles known as Raphidomonadea.

Commation cryoporinum is a species of heterotrophic protists discovered in 1993 in Antarctic waters. It is one of two species in the Commatiida, an order of stramenopiles closely related to actinophryids, a group of heliozoan protists, and to raphidophytes, a group of algae.

Commation eposianum is a species of heterotrophic protists discovered in 1993 in Antarctic waters. It is one of two species in the Commatiida, an order of stramenopiles closely related to actinophryids, a group of heliozoan protists, and to raphidophytes, a group of algae.

Raphopoda is a grouping of heterotrophic protists. It contains the heterotroph organisms within class Raphidomonadea, classified as two orders: Commatiida, comprised by the sole genus of flagellates Commation, and Actinophryida, an order of heliozoa, amoebae with stiff specialized pseudopodia called axopodia.

<i>Urceolus</i> Genus of flagellates

Urceolus is a genus of heterotrophic flagellates belonging to the Euglenozoa, a phylum of single-celled eukaryotes or protists. Described by Russian biologist Konstantin Mereschkowsky in 1877, its type species is Urceolus alenizini. Species of this genus are characterized by deformable flask-shaped cells that exhibit at least one flagellum that is active at the tip, arising from a neck-like structure that also hosts the feeding apparatus. They are found in a variety of water body sediments across the globe. According to evolutionary studies, Urceolus belongs to a group of Euglenozoa known as peranemids, closely related to the euglenophyte algae.

References

  1. 1 2 3 4 5 Cavalier-Smith, Thomas; Scoble, Josephine Margaret (2013). "Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes". European Journal of Protistology. 49 (3): 328–353. doi:10.1016/j.ejop.2012.09.002. PMID   23219323.
  2. 1 2 3 4 5 Mikrjukov, Kirill A.; Patterson, David J. (2001). "Taxonomy and phylogeny of Heliozoa. III. Actinophryids" (PDF). Acta Protozoologica. 40: 3–25.
  3. Gast, R.J. (2017). "Centrohelida and Other Heliozoan-like Protists". In Archibald, J.; Simpson, A.; Slamovits, C.; Margulis, L.; Melkonian, M.; Chapman, D.; Corliss, J. (eds.). Handbook of the Protists. Cham, Switzerland: Springer International. pp. 1–17. doi:10.1007/978-3-319-32669-6_28-1. ISBN   978-3-319-32669-6.
  4. Azovsky, Andrey I.; Tikhonenkov, Denis V.; Mazei, Yuri A. (2016). "An estimation of the global diversity and distribution of the smallest eukaryotes: biogeography of marine benthic heterotrophic flagellates". Protist. 167 (5): 411–424. doi:10.1016/j.protis.2016.07.001.
  5. Lee, Won Je; Brandt, Susan M.; Vørs, Naja; Patterson, David J. (2003). "Darwin's heterotrophic flagellates". Ophelia. 57 (2): 63–98. doi:10.1080/00785236.2003.10409506.
  6. Wilkinson, David M; Smith, Humphrey G. (2006). "An initial account of the terrestrial protozoa of Ascension Island" (PDF). Acta Protozoologica. 45: 407–413.