Hemihedrite

Last updated
Hemihedrite
Hemihedrite-phoenicochroite-537207.jpg
Red phoenicochroite and orange hemihedrite microcrystals richly cover the matrix
General
Category Chromate mineral
Formula
(repeating unit)
Pb10Zn(CrO4)6(SiO4)2(F,OH)2
IMA symbol Hhe [1]
Strunz classification 7.FC.15
Crystal system Triclinic
Space group P1 (No. 2)
Unit cell a = 9.49, b = 11.44
c = 10.84 [Å]; α = 120.5°
β = 92.1°, γ = 55.83°; Z = 1
Identification
ColorBright orange, henna-brown, to almost black
Crystal habit Euhedral crystals with hemihedral morphology
Twinning Present
Mohs scale hardness3
Luster Vitreous
Streak Saffron-yellow
Diaphaneity Translucent to transparent
Specific gravity 6.42
Optical propertiesBiaxial (+)
Refractive index nα = 2.105 nβ = 2.320 nγ = 2.650
Birefringence δ = 0.545
Pleochroism Feeble, yellow to orange
2V angle 88° (measured)
References [2] [3] [4] [5] [6]

Hemihedrite is a rare lead zinc chromate silicate mineral with formula Pb10Zn(CrO4)6(SiO4)2(F,OH)2. It forms a series with the copper analogue iranite. [3]

Discovery and occurrence

Hemihedrite was first described in 1967 for occurrences in the Florence lead silver mine in the Ripsey District, Tortilla Mountains, Pinal County, Arizona, US. [3] It was named for the hemihedral morphology of its crystals. [2]

It occurs in oxidized veins containing galena, sphalerite and pyrite. Associated secondary minerals include cerussite, phoenicochroite, vauquelinite, willemite, wulfenite, galena, sphalerite, pyrite, tennantite and chalcopyrite. [2] It has been reported from several mining districts in Arizona and one in Nevada. It has also been reported from the Antofagasta Region of Chile and the Anarak District of Esfahan Province, Iran. [3]


Related Research Articles

<span class="mw-page-title-main">Sphalerite</span> Zinc-iron sulfide mineral

Sphalerite is a sulfide mineral with the chemical formula (Zn, Fe)S. It is the most important ore of zinc. Sphalerite is found in a variety of deposit types, but it is primarily in sedimentary exhalative, Mississippi-Valley type, and volcanogenic massive sulfide deposits. It is found in association with galena, chalcopyrite, pyrite, calcite, dolomite, quartz, rhodochrosite, and fluorite.

<span class="mw-page-title-main">Germanite</span> Rare copper iron germanium sulfide mineral

Germanite is a rare copper iron germanium sulfide mineral, Cu26Fe4Ge4S32. It was first discovered in 1922, and named for its germanium content. It is only a minor source of this important semiconductor element, which is mainly derived from the processing of the zinc sulfide mineral sphalerite. Germanite contains gallium, zinc, molybdenum, arsenic, and vanadium as impurities.

<span class="mw-page-title-main">Galena</span> Natural mineral form of lead sulfide

Galena, also called lead glance, is the natural mineral form of lead(II) sulfide (PbS). It is the most important ore of lead and an important source of silver.

<span class="mw-page-title-main">Chalcocite</span> Sulfide mineral

Chalcocite, copper(I) sulfide (Cu2S), is an important copper ore mineral. It is opaque and dark gray to black, with a metallic luster. It has a hardness of 2.5–3 on the Mohs scale. It is a sulfide with a monoclinic crystal system.

<span class="mw-page-title-main">Murdochite</span> Mineral combining lead and copper oxides

Murdochite is a mineral combining lead and copper oxides with the chemical formula PbCu
6
O
8−x
(Cl,Br)
2x
 (x ≤ 0.5).

<span class="mw-page-title-main">Marcasite</span> Iron disulfide (FeS2) with orthorhombic crystal structure

The mineral marcasite, sometimes called "white iron pyrite", is iron sulfide (FeS2) with orthorhombic crystal structure. It is physically and crystallographically distinct from pyrite, which is iron sulfide with cubic crystal structure. Both structures contain the disulfide S22− ion, having a short bonding distance between the sulfur atoms. The structures differ in how these di-anions are arranged around the Fe2+ cations. Marcasite is lighter and more brittle than pyrite. Specimens of marcasite often crumble and break up due to the unstable crystal structure.

<span class="mw-page-title-main">Mimetite</span> Lead arsenate chloride mineral

Mimetite is a lead arsenate chloride mineral (Pb5(AsO4)3Cl) which forms as a secondary mineral in lead deposits, usually by the oxidation of galena and arsenopyrite. The name derives from the Greek Μιμητής mimetes, meaning "imitator" and refers to mimetite's resemblance to the mineral pyromorphite. This resemblance is not coincidental, as mimetite forms a mineral series with pyromorphite (Pb5(PO4)3Cl) and with vanadinite (Pb5(VO4)3Cl). Notable occurrences are Mapimi, Durango, Mexico and Tsumeb, Namibia.

<span class="mw-page-title-main">Alstonite</span> Hydrothermal mineral

Alstonite, also known as bromlite, is a low temperature hydrothermal mineral that is a rare double carbonate of calcium and barium with the formula BaCa(CO
3
)
2
, sometimes with some strontium. Barytocalcite and paralstonite have the same formula but different structures, so these three minerals are said to be trimorphous. Alstonite is triclinic but barytocalcite is monoclinic and paralstonite is trigonal. The species was named Bromlite by Thomas Thomson in 1837 after the Bromley-Hill mine, and alstonite by August Breithaupt of the Freiberg Mining Academy in 1841, after Alston, Cumbria, the base of operations of the mineral dealer from whom the first samples were obtained by Thomson in 1834. Both of these names have been in common use.

<span class="mw-page-title-main">Bournonite</span> Sulfosalt mineral species

Bournonite, also axotomous antimony glance, wheel ore, berthonite, volchite or dystomic glance (German: antimonbleikupferblende) is a sulfosalt mineral species, trithioantimoniate of lead and copper with the formula PbCuSbS3.

<span class="mw-page-title-main">Stephanite</span>

Stephanite is a silver antimony sulfosalt mineral with formula: Ag5SbS4. It is composed of 68.8% silver, and sometimes is of importance as an ore of this metal.

<span class="mw-page-title-main">Fornacite</span> Rare lead, copper chromate arsenate hydroxide mineral

Fornacite is a rare lead, copper chromate arsenate hydroxide mineral with the formula: Pb2Cu(CrO4)(AsO4)(OH). It forms a series with the phosphate mineral vauquelinite. It forms variably green to yellow, translucent to transparent crystals in the monoclinic – prismatic crystal system. It has a Mohs hardness of 2.3 and a specific gravity of 6.27.

<span class="mw-page-title-main">Alabandite</span> Sulfide mineral

Alabandite or alabandine, formerly known as manganese blende or bluemenbachite is a rarely occurring manganese sulfide mineral. It crystallizes in the cubic crystal system with the chemical composition Mn2+S and develops commonly massive to granular aggregates, but rarely also cubic or octahedral crystals to 1 cm.

Xilingolite is a lead sulfide mineral with formula Pb3Bi2S6. It has a hardness of 3, a metallic luster, and usually exhibits a lead-grey color. It is a dimorph of lillianite, exhibiting increased Pb-Bi order and decreased symmetry.

<span class="mw-page-title-main">Semseyite</span>

Semseyite is a rarely occurring sulfosalt mineral and is part of the class of lead antimony sulfides. It crystallizes in the monoclinic system with the chemical composition Pb9Sb8S21. The mineral forms dark gray to black aggregates.

Guettardite is a rare arsenic-antimony lead sulfosalt mineral with the chemical formula Pb(Sb,As)2S4. It forms gray black metallic prismatic to acicular crystals with monoclinic symmetry. It is a dimorph of the triclinic twinnite.

<span class="mw-page-title-main">Ianbruceite</span> Rare hydrated zinc arsenate

Ianbruceite is a rare hydrated zinc arsenate with the formula [Zn2(OH)(H2O)(AsO4)](H2O)2; material from the Driggith mine has traces of cobalt. It was first discovered at Tsumeb, approved by the International Mineralogical Association as a new mineral species in 2011, reference IMA2011-49, and named for Ian Bruce, who founded "Crystal Classics" in the early 1990s, and was heavily involved in attempts to reopen the famous Tsumeb mine for specimen mining.
In 2013 new occurrences of ianbruceite were reported from the neighbouring Driggith and Potts Gill mines on High Pike in the Caldbeck Fells, Cumbria, England. Here the mineral is probably a post-mining product. Caldbeck Fells and Tsumeb are the only reported localities for ianbruceite to date (May 2013).

<span class="mw-page-title-main">Köttigite</span> Rare hydrated zinc arsenate

Köttigite is a rare hydrated zinc arsenate which was discovered in 1849 and named by James Dwight Dana in 1850 in honour of Otto Friedrich Köttig (1824–1892), a German chemist from Schneeberg, Saxony, who made the first chemical analysis of the mineral. It has the formula Zn3(AsO4)2·8H2O and it is a dimorph of metaköttigite, which means that the two minerals have the same formula, but a different structure: köttigite is monoclinic and metaköttigite is triclinic. There are several minerals with similar formulae but with other cations in place of the zinc. Iron forms parasymplesite Fe2+3(AsO4)2·8H2O; cobalt forms the distinctively coloured pinkish purple mineral erythrite Co3(AsO4)2·8H2O and nickel forms annabergite Ni3(AsO4)2·8H2O. Köttigite forms series with all three of these minerals and they are all members of the vivianite group.

<span class="mw-page-title-main">Carminite</span> Anhydrous arsenate mineral containing hydroxyl

Carminite (PbFe3+2(AsO4)2(OH)2) is an anhydrous arsenate mineral containing hydroxyl. It is a rare secondary mineral that is structurally related to palermoite (Li2SrAl4(PO4)4(OH)4). Sewardite (CaFe3+2(AsO4)2(OH)2) is an analogue of carminite, with calcium in sewardite in place of the lead in carminite. Mawbyite is a dimorph (same formula, different structure) of carminite; mawbyite is monoclinic and carminite is orthorhombic. It has a molar mass of 639.87 g. It was discovered in 1850 and named for the characteristic carmine colour.

<span class="mw-page-title-main">Segnitite</span> Common iron oxide mineral

Segnitite is a lead iron(III) arsenate mineral. Segnitite was first found in the Broken Hill ore deposit in Broken Hill, New South Wales, Australia. In 1991, segnitite was approved as a new mineral. Segnitite has since been found worldwide near similar locality types where rocks are rich in zinc and lead especially. it was named for Australian mineralogist, gemologist and petrologist Edgar Ralph Segnit. The mineral was named after E. R. Segnit due to his contributions to Australian mineralogy.

Raygrantite is a mineral first discovered in Big Horn Mountains, Maricopa County, Arizona, US. More specifically, it is located in the evening star mine, which is a Cu, V, Pb, Ag, Au, and W mine. Raygrantite is a member of the iranite mineral group, which consists of hemihedrite, iranite, and raygrantite. This mineral received its name in honor of Raymond W. Grant, a retired professor who primarily focused on the minerals of Arizona. The typical crystal structure of raygrantite is bladed with parallel striations to the C axis. Its ideal chemical formula is Pb10Zn(SO4)6(SiO4)2(OH)2. The IMA (International Mineralogical Association) approved raygrantite in 2013, and the first publication regarding this mineral was put forth in 2017.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 Handbook of Mineralogy
  3. 1 2 3 4 Hemihedrite on Mindat.org
  4. Hemihedrite data on Webmineral
  5. Mineralienatlas
  6. McLean, W.J.; Anthony, J.W. (1970). "The crystal structure of hemihedrite". American Mineralogist. 55: 1103–1114.