Hereditary carrier

Last updated
Punnett square: If the other parent does not have the recessive genetic disposition, it does not appear in the phenotype of the children, but on the average 50% of them become carriers. Autosomal recessive inheritance - Carriers.png
Punnett square: If the other parent does not have the recessive genetic disposition, it does not appear in the phenotype of the children, but on the average 50% of them become carriers.

A hereditary carrier (genetic carrier or just carrier), is a person or other organism that has inherited a recessive allele for a genetic trait or mutation but usually does not display that trait or show symptoms of the disease. Carriers are, however, able to pass the allele onto their offspring, who may then express the genetic trait.

Contents

Carriers in autosomal inheritances

Punnett square: If both parents are carriers, on the average 25 % of the offspring have the recessive trait in phenotype and 50 % are carriers. Autosomal recessive inheritance - segregation.png
Punnett square: If both parents are carriers, on the average 25 % of the offspring have the recessive trait in phenotype and 50 % are carriers.

Autosomal dominant-recessive inheritance is made possible by the fact that the individuals of most species (including all higher animals and plants) have two alleles of most hereditary predispositions because the chromosomes in the cell nucleus are usually present in pairs (diploid). Carriers can be female or male as the autosomes are homologous independently from the sex.

In carriers the expression of a certain characteristic is recessive. The individual has both a genetic predisposition for the dominant trait and a genetic predisposition for the recessive trait, and the dominant expression prevails in the phenotype. In an individual which is heterozygous regarding a certain allele, it is not externally recognisable that it also has the recessive allele. But if the carrier has a child, the recessive trait appears in the phenotype, in case the descendant receives the recessive allele from both parents and therefore does not possess the dominant allele that would cover the recessive trait. According to Mendelian Law of Segregation of genes an average of 25% of the offspring become homozygous and express the recessive trait. Carriers can either pass on normal autosomal recessive hereditary traits or an autosomal recessive hereditary disease.

Carriers in gonosomal inheritances

The mother is a carrier of the recessive hereditary disposition for Color blindness. The Y chromosome of the father cannot oppose this. The healthy allele on the X chromosome of the father can compensate for this in a daughter. She can see normally, but she becomes a conductor. The same pattern of inheritance applies to Haemophilia. Gonosomal recessive inheritance.png
The mother is a carrier of the recessive hereditary disposition for Color blindness. The Y chromosome of the father cannot oppose this. The healthy allele on the X chromosome of the father can compensate for this in a daughter. She can see normally, but she becomes a conductor. The same pattern of inheritance applies to Haemophilia.

Gonosomal recessive genes are also passed on by carriers. The term is used in human genetics in cases of hereditary traits in which the observed trait lies on the female sex chromosome, the X chromosome. These are sex-linked genes. The carriers are always women. Women have two homologous sex chromosomes (XX). Men cannot be carriers because they only have one X chromosome. If a man has a certain recessive genetic disposition on his X chromosome, this is called hemizygous and it gets phenotypically expressed.

Although the Y chromosome is not a really homologous chromosome and carries relatively little genetic information compared to X chromosomes, a genetic component on the Y chromosome can come to expression because there is no homologous chromosome with an allele which could overlay it.

Examples of traits inherited via the X chromosome are color blindness and the most common hereditary form of haemophilia which therefore affect men much more often than women. [1] [2]

Inheritance by female carriers Erbgang Bluterkrankheit.svg
Inheritance by female carriers

Queen Victoria, and her daughters Princesses Alice and Beatrix, were carriers of the hemophilia gene (an abnormal allele of a gene, necessary to produce one of the blood clotting factors). Both had children who continued to pass on the gene to succeeding generations of the royal houses of Spain and Russia, into which they married. [3] Since males only have one X chromosome, males who carried the altered gene had hemophilia B. Those female children who inherited the altered gene were asymptomatic carriers who also would have passed it to half of their children.

Gonosomal dominant inheritances are also known. There are no carriers since owners of a dominant hereditary disposition phenotypically express the trait in each case.

Related Research Articles

An allele, or allelomorph, is a variant of the sequence of nucleotides at a particular location, or locus, on a DNA molecule.

<span class="mw-page-title-main">Autosome</span> Any chromosome other than a sex chromosome

An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal pairs, which may have different structures. The DNA in autosomes is collectively known as atDNA or auDNA.

The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a specific gene depends on the number of copies of each chromosome found in that species, also referred to as ploidy. In diploid species like humans, two full sets of chromosomes are present, meaning each individual has two alleles for any given gene. If both alleles are the same, the genotype is referred to as homozygous. If the alleles are different, the genotype is referred to as heterozygous.

<span class="mw-page-title-main">Heredity</span> Passing of traits to offspring from the species parents or ancestor

Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents. Through heredity, variations between individuals can accumulate and cause species to evolve by natural selection. The study of heredity in biology is genetics.

<span class="mw-page-title-main">Mendelian inheritance</span> Type of biological inheritance

Mendelian inheritance is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularized by William Bateson. These principles were initially controversial. When Mendel's theories were integrated with the Boveri–Sutton chromosome theory of inheritance by Thomas Hunt Morgan in 1915, they became the core of classical genetics. Ronald Fisher combined these ideas with the theory of natural selection in his 1930 book The Genetical Theory of Natural Selection, putting evolution onto a mathematical footing and forming the basis for population genetics within the modern evolutionary synthesis.

<span class="mw-page-title-main">Dominance (genetics)</span> One gene variant masking the effect of another in the other copy of the gene

In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second is called recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child. Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance, such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes, and co-dominance, in which different variants on each chromosome both show their associated traits.

<span class="mw-page-title-main">Pedigree chart</span> Diagram used in biology

A pedigree chart is a diagram that shows the occurrence and appearance of phenotypes of a particular gene or organism and its ancestors from one generation to the next, most commonly humans, show dogs, and race horses.

<span class="mw-page-title-main">X-linked recessive inheritance</span> Mode of inheritance

X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be always expressed in males and in females who are homozygous for the gene mutation, see zygosity. Females with one copy of the mutated gene are carriers.

<span class="mw-page-title-main">Sex linkage</span> Sex-specific patterns of inheritance

Sex linked describes the sex-specific reading patterns of inheritance and presentation when a gene mutation (allele) is present on a sex chromosome (allosome) rather than a non-sex chromosome (autosome). In humans, these are termed X-linked recessive, X-linked dominant and Y-linked. The inheritance and presentation of all three differ depending on the sex of both the parent and the child. This makes them characteristically different from autosomal dominance and recessiveness.

<span class="mw-page-title-main">Non-Mendelian inheritance</span> Type of pattern of inheritance

Non-Mendelian inheritance is any pattern in which traits do not segregate in accordance with Mendel's laws. These laws describe the inheritance of traits linked to single genes on chromosomes in the nucleus. In Mendelian inheritance, each parent contributes one of two possible alleles for a trait. If the genotypes of both parents in a genetic cross are known, Mendel's laws can be used to determine the distribution of phenotypes expected for the population of offspring. There are several situations in which the proportions of phenotypes observed in the progeny do not match the predicted values.

Human genetics is the study of inheritance as it occurs in human beings. Human genetics encompasses a variety of overlapping fields including: classical genetics, cytogenetics, molecular genetics, biochemical genetics, genomics, population genetics, developmental genetics, clinical genetics, and genetic counseling.

Genetics, a discipline of biology, is the science of heredity and variation in living organisms.

In genetics, a reciprocal cross is a breeding experiment designed to test the role of parental sex on a given inheritance pattern. All parent organisms must be true breeding to properly carry out such an experiment. In one cross, a male expressing the trait of interest will be crossed with a female not expressing the trait. In the other, a female expressing the trait of interest will be crossed with a male not expressing the trait. It is the cross that could be made either way or independent of the sex of the parents. For example, suppose a biologist wished to identify whether a hypothetical allele Z, a variant of some gene A, is on the male or female sex chromosome. They might first cross a Z-trait female with an A-trait male and observe the offspring. Next, they would cross an A-trait female with a Z-trait male and observe the offspring. Via principles of dominant and recessive alleles, they could then make an inference as to which sex chromosome contains the gene Z, if either in fact did.

<span class="mw-page-title-main">Test cross</span> Concept in classical genetics

Under the law of dominance in genetics, an individual expressing a dominant phenotype could contain either two copies of the dominant allele or one copy of each dominant and recessive allele. By performing a test cross, one can determine whether the individual is heterozygous or homozygous dominant.

<span class="mw-page-title-main">Sex chromosome</span> Chromosome that differs from an ordinary autosome in form, size, and behavior

Sex chromosomes are chromosomes that carry the genes that determine the sex of an individual. The human sex chromosomes are a typical pair of mammal allosomes. They differ from autosomes in form, size, and behavior. Whereas autosomes occur in homologous pairs whose members have the same form in a diploid cell, members of an allosome pair may differ from one another.

Pseudodominance is the situation in which the inheritance of a recessive trait mimics a dominant pattern.

An obligate carrier is an individual who may be clinically unaffected but who must carry a gene mutation based on analysis of the family history; usually applies to disorders inherited in an autosomal recessive and X-linked recessive manner.

Classical genetics is the branch of genetics based solely on visible results of reproductive acts. It is the oldest discipline in the field of genetics, going back to the experiments on Mendelian inheritance by Gregor Mendel who made it possible to identify the basic mechanisms of heredity. Subsequently, these mechanisms have been studied and explained at the molecular level.

This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. It has been designed as a companion to Glossary of cellular and molecular biology, which contains many overlapping and related terms; other related glossaries include Glossary of biology and Glossary of ecology.

An X-linked genetic disease is a disease inherited through a genetic defect on the X chromosome. In human cells, there is a pair of non-matching sex chromosomes, labelled X and Y. Females carry two X chromosomes, whereas males have one X and one Y chromosome. A disease or trait determined by a gene on the X chromosome demonstrates X-linked inheritance, which can be divided into dominant and recessive patterns.

References

  1. Neil A. Campbell, Jane B. Reece: Biologie. Spektrum-Verlag 2003, ISBN   3-8274-1352-4, page 308–311.
  2. Ulrich Weber: Biologie Gesamtband Oberstufe, Cornelsen-Verlag 2001, ISBN   3-464-04279-0, page 178–182.
  3. Potts, W.T.W. "Royal Haemophilia." Journal of Biological Education (Society of Biology) 30.3 (1996): 207. Academic Search Premier. 16 Sept. 2013