Hexadecanethiol

Last updated
Hexadecanethiol
1-hexadecaanthiol t.png
Names
Preferred IUPAC name
Hexadecane-1-thiol
Other names
1-hexadecanethiol; hexadecyl mercaptan, 1-mercaptohexadecane, cetyl mercaptan
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.018.952 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C16H34S/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17/h17H,2-16H2,1H3
    Key: ORTRWBYBJVGVQC-UHFFFAOYSA-N
  • CCCCCCCCCCCCCCCCS
Properties
C16H34S
Molar mass 258.51 g·mol−1
AppearanceColorless liquid
Density 0,85 g/cm3
Melting point 18–20 °C (64–68 °F; 291–293 K)
Boiling point 334 °C (633 °F; 607 K)
Insoluble
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
Flash point 135 °C (275 °F; 408 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

1-Hexadecanethiol is a chemical compound from the group of thiols. Its chemical formula is C
16
H
34
S
. [1] [2]

Contents

Synthesis

1-Hexadecanethiol can be obtained by reacting 1-bromohexadecane with thiourea.

Properties

1-Hexadecanethiol is a combustible colorless liquid with an unpleasant odor, which is practically insoluble in water. [3]

Applications

1-Hexadecanethiol is used as a synthesis chemical. The compound is also used for the production of nanoparticles and hydrophobic self-assembling monolayers. The high affinity of the thiol group to the elements of the copper group causes the thiols to spontaneously deposit in a high-order layer when a corresponding metal of a 1-hexadecanethiol solution is exposed. [4]

Toxicology and safety

The substance decomposes upon combustion with the formation of toxic gases, including sulfur oxides. It reacts violently with strong oxidizing agents, acids, reducing agents, and metals.

Related Research Articles

<span class="mw-page-title-main">Alkali metal</span> Group of highly reactive chemical elements

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element.

<span class="mw-page-title-main">Sodium</span> Chemical element, symbol Na and atomic number 11

Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope is 23Na. The free metal does not occur in nature and must be prepared from compounds. Sodium is the sixth most abundant element in the Earth's crust and exists in numerous minerals such as feldspars, sodalite, and halite (NaCl). Many salts of sodium are highly water-soluble: sodium ions have been leached by the action of water from the Earth's minerals over eons, and thus sodium and chlorine are the most common dissolved elements by weight in the oceans.

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

<span class="mw-page-title-main">Sulfide (organic)</span> Organic compound with an –S– group

In organic chemistry, an organic sulfide or thioether is an organosulfur functional group with the connectivity R−S−R' as shown on right. Like many other sulfur-containing compounds, volatile sulfides have foul odors. A sulfide is similar to an ether except that it contains a sulfur atom in place of the oxygen. The grouping of oxygen and sulfur in the periodic table suggests that the chemical properties of ethers and sulfides are somewhat similar, though the extent to which this is true in practice varies depending on the application.

<span class="mw-page-title-main">Anthracene</span> Chemical compound

Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes. Anthracene is colorless but exhibits a blue (400–500 nm peak) fluorescence under ultraviolet radiation.

<span class="mw-page-title-main">Thioester</span> Organosulfur compounds of the form R–SC(=O)–R’

In organic chemistry, thioesters are organosulfur compounds with the molecular structure R−C(=O)−S−R’. They are analogous to carboxylate esters with the sulfur in the thioester replacing oxygen in the carboxylate ester, as implied by the thio- prefix. They are the product of esterification of a carboxylic acid with a thiol. In biochemistry, the best-known thioesters are derivatives of coenzyme A, e.g., acetyl-CoA. The R and R' represent organyl groups, or H in the case of R.

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are available both in anhydrous and hydrated forms which are both hygroscopic. They are common sources of iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while the hydrate is a mild oxidizing agent. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

In chemistry, a reactivity series (or activity series) is an empirical, calculated, and structurally analytical progression of a series of metals, arranged by their "reactivity" from highest to lowest. It is used to summarize information about the reactions of metals with acids and water, single displacement reactions and the extraction of metals from their ores.

Chlorine trifluoride is an interhalogen compound with the formula ClF3. This colorless, poisonous, corrosive, and extremely reactive gas condenses to a pale-greenish yellow liquid, the form in which it is most often sold. Despite being famous for its extreme oxidation properties and igniting many things, chlorine trifluoride is not combustible itself. The compound is primarily of interest in plasmaless cleaning and etching operations in the semiconductor industry, in nuclear reactor fuel processing, historically as a component in rocket fuels, and various other industrial operations owing to its corrosive nature.

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature abounds with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

<span class="mw-page-title-main">Lithium hydride</span> Chemical compound

Lithium hydride is an inorganic compound with the formula LiH. This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a salt-like (ionic) hydride, it has a high melting point, and it is not soluble but reactive with all protic organic solvents. It is soluble and nonreactive with certain molten salts such as lithium fluoride, lithium borohydride, and sodium hydride. With a molar mass of 7.95 g/mol, it is the lightest ionic compound.

<span class="mw-page-title-main">Tin(IV) oxide</span> Chemical compound known as stannic oxide, cassiterite and tin ore

Tin(IV) oxide, also known as stannic oxide, is the inorganic compound with the formula SnO2. The mineral form of SnO2 is called cassiterite, and this is the main ore of tin. With many other names, this oxide of tin is an important material in tin chemistry. It is a colourless, diamagnetic, amphoteric solid.

<span class="mw-page-title-main">Thiophenol</span> Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols. An exception is the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

Perchloryl fluoride is a reactive gas with the chemical formula ClO
3
F
. It has a characteristic sweet odor that resembles gasoline and kerosene. It is toxic and is a powerful oxidizing and fluorinating agent. It is the acid fluoride of perchloric acid.

<span class="mw-page-title-main">Allyl bromide</span> Chemical compound

Allyl bromide (3-bromopropene) is an organic halide. It is an alkylating agent used in synthesis of polymers, pharmaceuticals, synthetic perfumes and other organic compounds. Physically, allyl bromide is a colorless liquid with an irritating and persistent smell, however, commercial samples are yellow or brown. Allyl bromide is more reactive but more expensive than allyl chloride, and these considerations guide its use.

<span class="mw-page-title-main">Pinacolone</span> Chemical compound

Pinacolone (3,3-dimethyl-2-butanone) is an important ketone in organic chemistry. It is a colorless liquid and has a slight peppermint- or camphor- odor. It is a precursor to triazolylpinacolone in the synthesis of the fungicide triadimefon and in synthesis of the herbicide metribuzin. The molecule is an unsymmetrical ketone. The α-methyl group can participate in condensation reactions. The carbonyl group can undergo the usual reactions. It is a Schedule 3 compound under the Chemical Weapons Convention 1993, due to being related to pinacolyl alcohol, which is used in the production of soman. It is also a controlled export in Australia Group member states.

<span class="mw-page-title-main">Cobalt(II) hydroxide</span> Chemical compound

Cobalt(II) hydroxide or cobaltous hydroxide is the inorganic compound with the formula Co(OH)
2
, consisting of divalent cobalt cations Co2+
and hydroxide anions HO
. The pure compound, often called the "beta form" is a pink solid insoluble in water.

<span class="mw-page-title-main">Zirconium(III) chloride</span> Chemical compound

Zirconium(III) chloride is an inorganic compound with formula ZrCl3. It is a blue-black solid that is highly sensitive to air.

<span class="mw-page-title-main">Benzyl iodide</span> Chemical compound

Benzyl iodide is an organic compound with the chemical formula C
7
H
7
I
. The compound consists of a benzene ring with an attached iodidemethyl group. The substance is an alkyl halide and is a constitutional isomer of the iodotoluenes.

References

  1. "1-Hexadecanethiol". Sigma Aldrich . sigmaaldrich.com. Retrieved 9 June 2017.
  2. "1-Hexadecanethiol". NIST. webbook.nist.gov. Retrieved 9 June 2017.
  3. CRC Handbook of Chemistry and Physics , 90. Edition, CRC Press, Boca Raton, Florida, 2009, ISBN   978-1-4200-9084-0, Section 3, Physical Constants of Organic Compounds, p. 3-306.
  4. Desmyter, Etienne A.; Ferrell, William J.; Garces., Antonio (July 1976). "Synthesis and properties of 35S, 14C and 3H labeled S-alkyl glycerol ethers and derivatives" (PDF). Chemistry and Physics of Lipids. 16 (4): 276–284. doi:10.1016/0009-3084(76)90022-0. hdl: 2027.42/21737 . PMID   949825.