This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
In neuroscience, homeostatic plasticity refers to the capacity of neurons to regulate their own excitability relative to network activity. The term homeostatic plasticity derives from two opposing concepts: 'homeostatic' (a product of the Greek words for 'same' and 'state' or 'condition') and plasticity (or 'change'), thus homeostatic plasticity means "staying the same through change". In the nervous system, neurons must be able to evolve with the development of their constantly changing environment while simultaneously staying the same amidst this change. This stability is important for neurons to maintain their activity and functionality to prevent neurons from carcinogenesis. At the same time, neurons need to have flexibility to adapt to changes and make connections to cope with the ever-changing environment of a developing nervous system. [1]
The capacity of neurons to sustain consistent activity levels in response to variations in synaptic input is known as homeostatic synaptic plasticity. Homeostatic synaptic plasticity occurs when neurons modify their synaptic strength in response to variations in activity levels to preserve network stability. This response serves to keep neuronal circuits in the appropriate range of activity for proper functioning. Homeostatic synaptic plasticity can be shown in synaptic scaling, postsynaptic receptor expression, presynaptic alterations, and dendritic spine remodeling.
Homeostatic presynaptic plasticity refers to the ability of neurons to regulate neurotransmitter release at presynaptic terminals, ensuring a steady range of brain activity. This process involves various mechanisms, such as quantal size adjustment, differential expression of presynaptic proteins, and modification of vesicle recycling. Quantal size adjustment helps maintain steady postsynaptic responses despite changes in synaptic strength. Differential expression of presynaptic proteins, such as calcium channels or synaptic vesicle proteins, can also be altered by neurons to affect neurotransmitter release rate.
Homeostatic postsynaptic plasticity is crucial for maintaining consistent levels of synaptic activity in neurons, which are formed at specific synapses in the brain. Homeostatic processes involve changes in the expression of receptors, changes in receptor subunit composition, and changes to intracellular signaling pathways. For example, the NMDA receptor can change its subunit composition to improve sensitivity to neurotransmitters. Additionally, changes in the expression and location of neurotransmitter receptors can impact synaptic transmission when specific signaling pathways are activated. Synaptic adhesion molecules can also be influenced by homeostatic processes. Overall, homeostatic postsynaptic plasticity contributes to the stability and proper functioning of neural circuits, allowing the brain to adapt to changing conditions without compromising the overall stability of neuronal activity. [2]
Homeostatic intrinsic plasticity refers to the ability of neurons to change their intrinsic electrical characteristics in response to changes in synaptic or network activity. This process involves alterations in the excitability or firing characteristics of individual neurons, rather than primarily adjusting synaptic strength. Intrinsic plasticity processes associated with homeostasis include ion channel expression alterations, membrane conductance modifications, action potential threshold alterations, and regulation of intrinsic excitability. Neurons can upregulate the expression of sodium channels to maintain firing rates and increase excitability in case of a drop in synaptic activity. These changes impact the input-output link between neurons and the homeostatic control of neuronal activity.
Synaptic scaling is a homeostatic mechanism that allows neurons to modulate the strength of all synapses to maintain stable activity levels within a specific range. This process is characterized by changes in the quantity or sensitivity of neurotransmitter receptors on the postsynaptic membrane. Neurons can reduce the number of neurotransmitter receptors in response to network activity spikes, reducing synaptic strength, or increase the density in response to network activity drops, increasing sensitivity and boosting synaptic strength. This homeostatic regulation of brain circuits supports other types of synaptic plasticity, such as long-term depression and long-term potentiation.
Homeostatic synaptic plasticity is a means of maintaining the synaptic basis for learning, respiration, and locomotion, in contrast to the Hebbian plasticity associated with learning and memory. [3] Although Hebbian forms of plasticity, such as long-term potentiation and long-term depression occur rapidly, homeostatic plasticity (which relies on protein synthesis) can take hours or days. [4] TNF-α [5] and microRNAs [4] are important mediators of homeostatic synaptic plasticity.
Homeostatic plasticity is thought to balance Hebbian plasticity by modulating the activity of the synapse or the properties of ion channels. Homeostatic plasticity in neocortical circuits has been studied in depth by Gina G. Turrigiano and Sacha Nelson of Brandeis University, who first observed compensatory changes in excitatory postsynaptic currents (mEPSCs) after chronic activity manipulations. [6]
Long-term potentiation (LTP) and long-term depression (LTD) are example of Hebbian plasticity. This means that these terms also have to do with the brain, synaptic strength, and how memory/learning are processed. Long-term potentiation is a type of plasticity where the communication between neurons is improved over a long period of time. Long-term depression would be when this activity in the synapses are reduced. These terms are theorized to be responsible for the storage of memory, but it has not been officially confirmed. Another term that sums up LTP and LTD is synaptic plasticity, which describes this synaptic strength in the brain. [7]
A type of neuroplasticity that discusses the plasticity of the brain when facing injuries. The functions and abilities of a certain part of the brain can be moved to another part of the brain when damaged. For example, as the left and right side of the brain have certain functions, removing one side entirely may result in the remaining side to take over those abilities. This helps avoid the issue of the organism losing important functions needed for survival. [8]
Another type of neuroplasticity that, as the name suggests, involves the actual structure of the brain changing as a result of learning, as opposed to just synapses. But as amazing as the brain is, there is only so far that an organ this complex can push itself. [8]
Synaptic scaling has been proposed as a potential mechanism of homeostatic plasticity. [1] Homeostatic plasticity can be used to describe a process that maintains the stability of neuronal functions through a coordinated plasticity among subcellular compartments, such as the synapses versus the neurons and the cell bodies versus the axons. [9] Recently, it was proposed that homeostatic synaptic scaling may play a role in establishing the specificity of an associative memory. [10]
Homeostatic plasticity also maintains neuronal excitability in a real-time manner through the coordinated plasticity of threshold and refractory period at voltage-gated sodium channels. [11]
Homeostatic plasticity is also very important in the context of central pattern generators. In this context, neuronal properties are modulated in response to environmental changes in order to maintain an appropriate neural output. [3]
Homeostatic plasticity plays a crucial role in neurological disorders such as epilepsy, autism, Alzheimer's disease, and other neurodegenerative diseases. In these disorder, neurons ability to maintain stability in response to changes in activity levels or external stimuli is often altered. [12]
In a healthy brain, neuronal excitability and synaptic strength are homeostatically regulated to maintain balance between excitation and inhibition. In an epileptic brain, homeostatic plasticity mechanisms may become dysregulated leading to episodes of highly synchronized neuronal firing and seizure activity. It is still unclear how homeostatic compensation is involved in epileptogenic processes. Traditional pharmacological approaches may be ineffective in restoring physiological balance in the neuronal network. However, therapeutic strategies targeting homeostatic plasticity mechanisms may offer a potential solution. [12]
Homeostatic plasticity is vital for maintaining the neurological balance in the brain. An imbalance between excitatory and inhibitory neurotransmissions in the brain can lead to Autism spectrum disorder. Dysregulation of homeostatic plasticity and neural imbalance can contribute to the cognitive and behavioral symptoms associated with autism. [13]
In Alzheimer's disease, synaptic function and neuronal integrity are impaired. In a healthy brain, these mechanisms are tightly maintained by homeostatic plasticity. Deficits in homeostatic plasticity contribute to cognitive decline and memory impairment which are characteristic symptoms of Alzheimer's disease. [14]
Several neurological disorders are affected by homeostatic plasticity. Dysregulation of homeostatic plasticity can cause an excitatory or inhibitory network activity. Parkinson's disease, Huntington's disease, and ALS are all examples of disorder where dysregulation of neuronal network contribute to the pathophysiology of the disorders. [15]
Schizophrenia is characterized by disruptions in thought processes, perceptions, and emotions. Alterations in synaptic strength and connectivity potentially due to dysregulation in homeostatic mechanisms may lead to the symptoms observed in schizophrenic patients. These dysregulation contribute to the cognitive deficits and delusions observed in schizophrenia. [16]
Gina G. Turrigiano is an American neuroscientist known for her work on homeostatic plasticity mechanisms in the brain. Her research focused on synaptic strength and intrinsic excitability of neurons. She made key discoveries in synaptic scaling, synaptic plasticity, and other molecular mechanisms related to homeostatic regulation. [2]
Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body.
In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons. The opposite of LTP is long-term depression, which produces a long-lasting decrease in synaptic strength.
Hebbian theory is a neuropsychological theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell. It is an attempt to explain synaptic plasticity, the adaptation of brain neurons during the learning process. It was introduced by Donald Hebb in his 1949 book The Organization of Behavior. The theory is also called Hebb's rule, Hebb's postulate, and cell assembly theory. Hebb states it as follows:
Let us assume that the persistence or repetition of a reverberatory activity tends to induce lasting cellular changes that add to its stability. ... When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.
In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory.
In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depending upon brain region and developmental progress.
In neuroscience, a silent synapse is an excitatory glutamatergic synapse whose postsynaptic membrane contains NMDA-type glutamate receptors but no AMPA-type glutamate receptors. These synapses are named "silent" because normal AMPA receptor-mediated signaling is not present, rendering the synapse inactive under typical conditions. Silent synapses are typically considered to be immature glutamatergic synapses. As the brain matures, the relative number of silent synapses decreases. However, recent research on hippocampal silent synapses shows that while they may indeed be a developmental landmark in the formation of a synapse, that synapses can be "silenced" by activity, even once they have acquired AMPA receptors. Thus, silence may be a state that synapses can visit many times during their lifetimes.
An excitatory synapse is a synapse in which an action potential in a presynaptic neuron increases the probability of an action potential occurring in a postsynaptic cell. Neurons form networks through which nerve impulses travels, each neuron often making numerous connections with other cells of neurons. These electrical signals may be excitatory or inhibitory, and, if the total of excitatory influences exceeds that of the inhibitory influences, the neuron will generate a new action potential at its axon hillock, thus transmitting the information to yet another cell.
Spike-timing-dependent plasticity (STDP) is a biological process that adjusts the strength of connections between neurons in the brain. The process adjusts the connection strengths based on the relative timing of a particular neuron's output and input action potentials. The STDP process partially explains the activity-dependent development of nervous systems, especially with regard to long-term potentiation and long-term depression.
A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. Multiple neural circuits interconnect with one another to form large scale brain networks.
Neurotransmission is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron, and bind to and react with the receptors on the dendrites of another neuron a short distance away. A similar process occurs in retrograde neurotransmission, where the dendrites of the postsynaptic neuron release retrograde neurotransmitters that signal through receptors that are located on the axon terminal of the presynaptic neuron, mainly at GABAergic and glutamatergic synapses.
Metaplasticity is a term originally coined by W.C. Abraham and M.F. Bear to refer to the plasticity of synaptic plasticity. Until that time synaptic plasticity had referred to the plastic nature of individual synapses. However this new form referred to the plasticity of the plasticity itself, thus the term meta-plasticity. The idea is that the synapse's previous history of activity determines its current plasticity. This may play a role in some of the underlying mechanisms thought to be important in memory and learning such as long-term potentiation (LTP), long-term depression (LTD) and so forth. These mechanisms depend on current synaptic "state", as set by ongoing extrinsic influences such as the level of synaptic inhibition, the activity of modulatory afferents such as catecholamines, and the pool of hormones affecting the synapses under study. Recently, it has become clear that the prior history of synaptic activity is an additional variable that influences the synaptic state, and thereby the degree, of LTP or LTD produced by a given experimental protocol. In a sense, then, synaptic plasticity is governed by an activity-dependent plasticity of the synaptic state; such plasticity of synaptic plasticity has been termed metaplasticity. There is little known about metaplasticity, and there is much research currently underway on the subject, despite its difficulty of study, because of its theoretical importance in brain and cognitive science. Most research of this type is done via cultured hippocampus cells or hippocampal slices.
In the nervous system, a synapse is a structure that permits a neuron to pass an electrical or chemical signal to another neuron or to the target effector cell.
Synaptic potential refers to the potential difference across the postsynaptic membrane that results from the action of neurotransmitters at a neuronal synapse. In other words, it is the “incoming” signal that a neuron receives. There are two forms of synaptic potential: excitatory and inhibitory. The type of potential produced depends on both the postsynaptic receptor, more specifically the changes in conductance of ion channels in the post synaptic membrane, and the nature of the released neurotransmitter. Excitatory post-synaptic potentials (EPSPs) depolarize the membrane and move the potential closer to the threshold for an action potential to be generated. Inhibitory postsynaptic potentials (IPSPs) hyperpolarize the membrane and move the potential farther away from the threshold, decreasing the likelihood of an action potential occurring. The Excitatory Post Synaptic potential is most likely going to be carried out by the neurotransmitters glutamate and acetylcholine, while the Inhibitory post synaptic potential will most likely be carried out by the neurotransmitters gamma-aminobutyric acid (GABA) and glycine. In order to depolarize a neuron enough to cause an action potential, there must be enough EPSPs to both depolarize the postsynaptic membrane from its resting membrane potential to its threshold and counterbalance the concurrent IPSPs that hyperpolarize the membrane. As an example, consider a neuron with a resting membrane potential of -70 mV (millivolts) and a threshold of -50 mV. It will need to be raised 20 mV in order to pass the threshold and fire an action potential. The neuron will account for all the many incoming excitatory and inhibitory signals via summative neural integration, and if the result is an increase of 20 mV or more, an action potential will occur.
Gliotransmitters are chemicals released from glial cells that facilitate neuronal communication between neurons and other glial cells. They are usually induced from Ca2+ signaling, although recent research has questioned the role of Ca2+ in gliotransmitters and may require a revision of the relevance of gliotransmitters in neuronal signalling in general.
Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience; hence, it is the biological basis for learning and the formation of new memories. Activity-dependent plasticity is a form of neuroplasticity that arises from intrinsic or endogenous activity, as opposed to forms of neuroplasticity that arise from extrinsic or exogenous factors, such as electrical brain stimulation- or drug-induced neuroplasticity. The brain's ability to remodel itself forms the basis of the brain's capacity to retain memories, improve motor function, and enhance comprehension and speech amongst other things. It is this trait to retain and form memories that is associated with neural plasticity and therefore many of the functions individuals perform on a daily basis. This plasticity occurs as a result of changes in gene expression which are triggered by signaling cascades that are activated by various signaling molecules during increased neuronal activity.
Nonsynaptic plasticity is a form of neuroplasticity that involves modification of ion channel function in the axon, dendrites, and cell body that results in specific changes in the integration of excitatory postsynaptic potentials and inhibitory postsynaptic potentials. Nonsynaptic plasticity is a modification of the intrinsic excitability of the neuron. It interacts with synaptic plasticity, but it is considered a separate entity from synaptic plasticity. Intrinsic modification of the electrical properties of neurons plays a role in many aspects of plasticity from homeostatic plasticity to learning and memory itself. Nonsynaptic plasticity affects synaptic integration, subthreshold propagation, spike generation, and other fundamental mechanisms of neurons at the cellular level. These individual neuronal alterations can result in changes in higher brain function, especially learning and memory. However, as an emerging field in neuroscience, much of the knowledge about nonsynaptic plasticity is uncertain and still requires further investigation to better define its role in brain function and behavior.
Developmental plasticity is a general term referring to changes in neural connections during development as a result of environmental interactions as well as neural changes induced by learning. Much like neuroplasticity, or brain plasticity, developmental plasticity is specific to the change in neurons and synaptic connections as a consequence of developmental processes. A child creates most of these connections from birth to early childhood. There are three primary methods by which this may occur as the brain develops, but critical periods determine when lasting changes may form. Developmental plasticity may also be used in place of the term phenotypic plasticity when an organism in an embryonic or larval stage can alter its phenotype based on environmental factors. However, a main difference between the two is that phenotypic plasticity experienced during adulthood can be reversible, whereas traits that are considered developmentally plastic set foundations during early development that remain throughout the life of the organism.
In neuroscience, synaptic scaling is a form of homeostatic plasticity, in which the brain responds to chronically elevated activity in a neural circuit with negative feedback, allowing individual neurons to reduce their overall action potential firing rate. Where Hebbian plasticity mechanisms modify neural synaptic connections selectively, synaptic scaling normalizes all neural synaptic connections by decreasing the strength of each synapse by the same factor, so that the relative synaptic weighting of each synapse is preserved.
Synaptic fatigue, or short-term synaptic depression, is an activity-dependent form of short term synaptic plasticity that results in the temporary inability of neurons to fire and therefore transmit an input signal. It is thought to be a form of negative feedback in order to physiologically control particular forms of nervous system activity.
Synaptic plasticity refers to a chemical synapse's ability to undergo changes in strength. Synaptic plasticity is typically input-specific, meaning that the activity in a particular neuron alters the efficacy of a synaptic connection between that neuron and its target. However, in the case of heterosynaptic plasticity, the activity of a particular neuron leads to input unspecific changes in the strength of synaptic connections from other unactivated neurons. A number of distinct forms of heterosynaptic plasticity have been found in a variety of brain regions and organisms. These different forms of heterosynaptic plasticity contribute to a variety of neural processes including associative learning, the development of neural circuits, and homeostasis of synaptic input.