Central pattern generator

Last updated

Central pattern generators (CPGs) are self-organizing biological neural circuits [1] [2] that produce rhythmic outputs in the absence of rhythmic input. [3] [4] [5] They are the source of the tightly-coupled patterns of neural activity that drive rhythmic and stereotyped motor behaviors like walking, swimming, breathing, or chewing. The ability to function without input from higher brain areas still requires modulatory inputs, and their outputs are not fixed. Flexibility in response to sensory input is a fundamental quality of CPG-driven behavior. [3] [4] To be classified as a rhythmic generator, a CPG requires:

Contents

  1. "two or more processes that interact such that each process sequentially increases and decreases, and
  2. that, as a result of this interaction, the system repeatedly returns to its starting condition." [3]

CPGs are found in humans and most other vertebrates, and in some invertebrates. [6] [7] [8] [9] [10] [11]

Physiology

CPG neurons

Intrinsic properties of CPG neurons. Adapted from Marder and Bucher (2001). Intrinsic properties of CPG neurons.svg
Intrinsic properties of CPG neurons. Adapted from Marder and Bucher (2001).

CPG neurons can have different intrinsic membrane properties (see schematic). [12] Some neurons fire bursts of action potentials, either endogenously or in the presence of neuromodulatory substances. Other neurons are bistable and generate plateau potentials that can be triggered by a depolarizing current pulse, and terminated by a hyperpolarizing current pulse. Many CPG neurons fire after being released from inhibition (postinhibitory rebound). Another common feature of CPG neurons is a decrease in the frequency of firing during a constant depolarization (spike frequency adaptation).

Rhythm generation

Mechanisms of rhythm generation in CPGs. Adapted from Marder and Bucher (2001). Mechanisms of rhythm generation in CPGs.svg
Mechanisms of rhythm generation in CPGs. Adapted from Marder and Bucher (2001).

Rhythm generation in CPG networks depends on the intrinsic properties of CPG neurons and their synaptic connections. There are two general mechanisms for rhythm generation: pacemaker/follower and reciprocal inhibition (see schematic). [12]

In a network driven by a pacemaker, one or more neurons act as a core oscillator (pacemaker) that drives other, non-bursting neurons (follower) into a rhythmic pattern. Examples of pacemaker driven networks include the pyloric rhythm of the crustacean stomatogastric ganglion [13] and the vertebrate respiratory rhythms. [14]

In a network driven by reciprocal inhibition, two (groups of) neurons reciprocally inhibit each other. Such networks are known as half-center oscillators. The neurons are not rhythmically active when isolated, but they can produce alternating patterns of activity when coupled by inhibitory connections. (The neurons can also produce activity patterns of other relative phasing, including synchrony, depending on the synaptic properties). The transitions between activated and inhibited states can occur via a number of mechanisms. For example, spike-frequency adaptation in the bursting neuron(s) may slowly release the other neuron(s) from inhibition. [15] Reciprocal inhibition is a core feature of many CPGs, including those involved in locomotion. [16] [17] [18] [19]  

Gap junctions also contribute to rhythmic oscillations and neuronal synchrony in CPGs. [20] [21] [22] They act as low-pass filter allowing slow membrane voltage fluctuations to pass more effectively across cells. In neonatal mice, blocking gap junctions results in decreased rhythmic activity and can completely abolish drug induced fictive locomotion. [23] [24] [25] In zebrafish, motor neurons retrogradely control swim frequency via gap junctions. [26]

Short-term synaptic dynamics

CPG networks have extensive recurrent synaptic connections including reciprocal excitation and reciprocal inhibition. Synapses in CPG networks are subject to short-term activity dependent modifications. [27] [28] Short-term synaptic depression and facilitation of synapses can play a role in transitions between active and inactive phases of bursting and termination of bursts. [29] [30]

CPG circuits

CPG circuits thought to be involved in the control of locomotion consist of motor neurons and spinal interneurons and are located in the lower thoracic and lumbar regions of the vertebrate spinal cord, [31] and in each neuromere of the invertebrate ventral nerve cord. [32] CPG neurons involved in swallowing are located in the brain stem, specifically the hypoglossal nucleus within the medulla. [33] [34]

While the general location of CPG neurons can often be inferred, the specific location and identity of the participating neurons are only beginning to be understood. CPG networks are often distributed and can be flexibly reorganized, making it challenging to identify spinal interneurons. Over the past few decades, molecular and genetic programs that control neuronal patterning have been used to specifically target spinal interneurons in mice [35] and zebrafish. [36] Developing neural tube of embryonic mouse shows expression of distinct transcription factors in domains along the dorso-ventral axis of the spinal cord. [37] These domains give rise to distinct population of neurons that have been classified as dorsal (dI1-dI6) and ventral (V0-V3) cardinal classes of spinal interneurons. [38] [39] [35] The ventral neurons are considered to be members of the spinal CPG network. [35] Each of these interneuron class can be further divided into diverse subpopulations of neurons with distinct neurotransmitter phenotype, axonal projection and function during locomotion. [38] For example, V2 interneurons are ipsilaterally projecting that can be further classified as excitatory V2a and inhibitory V2b. V2s are important for flexor-extensor alternation and provide excitation to motor neurons. [38]

Neuromodulation

Organisms must adapt their behavior to meet the needs of their internal and external environments. Central pattern generators, as part of the neural circuitry of an organism, can be modulated to adapt to the organism's needs and surroundings. Three roles of neuromodulation have been found for CPG circuits: [3]

  1. Modulation is intrinsic to CPG network or required for its activation
  2. Modulation changes the functional configuration of CPGs to produce different outputs
  3. Modulation alters CPG neuron complement by switching neurons between networks and fusing formerly separate networks into larger entities

Neuromodulatory synapses may be part of the CPG network itself. [40] For example, the CPG underlying the escape swim response in Tritonia diomedea contains intrinsic neuromodulatory neurons. These neuromodulatory neurons can enhance neurotransmitter release from another neuron in the circuit and its neuromodulatory actions are thought to be important for producing swim motor program. [41] Neuromodulatory inputs can also activate CPG networks and can be necessary for generation of rhythmic output. Loss of neuromodulatory inputs can abolish rhythmic activity from pyloric network. [40] In vertebrates, application of neuromodulators have been shown to evoke locomotor activity. [42]

Neuromodulators can alter the synaptic strength as well as intrinsic properties of neurons. [43] These actions can alter the frequency and the phase relationships between neurons and thereby change the output pattern of the circuit. For example, exogenous application of various neuromodulators can elicit triphasic motor pattern in the STG where each modulator results in generation of a different motor pattern. [44] Neuromodulatory projections expressing a common modulator can also elicit different patterns from the same network. Stimulation of different proctolin-containing projection neurons in the STG results in a distinct motor pattern from the same network due to differences in cotransmitter complement of these projection neurons. [45]

The effects of neuromodulators are distributed throughout the CPG network. Specially, dopamine was shown to affect cellular and synaptic properties of nearly all components of the crustacean pyloric network. Moreover, dopamine can have opposing effects on different components of the network. As such, the final output of the network reflects a combination of modulatory actions on individual components. [46]

Modulation alters CPG neurons

Neuronal composition of CPGs can vary with the state of the system. [47] Neuromodulators can activate or inhibit neurons of the CPGs and can even combine different networks into one. [44] For example, in the lobster stomatogastric nervous system the neuropeptide, red pigment concentrating hormone, can strengthen synapses between two different networks to create a single, combined rhythm. [48] Neuromodulators can also result in switching of neurons from one network to another. [49]

Sensory feedback

Although the theory of central pattern generation calls for basic rhythmicity and patterning to be centrally generated, CPGs can respond to sensory feedback to alter the patterning in behaviorally appropriate ways. Alteration of the pattern is difficult because feedback received during only one phase may require changed movement in the other parts of the patterned cycle to preserve certain coordination relationships. For example, walking with a pebble in the right shoe alters the entire gait, even though the stimulus is only present while standing on the right foot. Even during the time when the left foot is down and the sensory feedback is inactive, action is taken to prolong the right leg swing and extend the time on the left foot, leading to limping. This effect could be due to widespread and long-lasting effects of the sensory feedback on the CPG or due to short-term effects on a few neurons that in turn modulate nearby neurons and spread the feedback through the entire CPG in that way. Some degree of modulation is required to allow one CPG to assume multiple states in response to feedback. [3]

Additionally, the effect of the sensory input varies depending on the phase of the pattern in which it occurs. For example, during walking, resistance to the top of the swinging foot (e.g., by a horizontal stick) causes the foot to be lifted higher to move over the stick. However, the same input to the standing foot cannot cause the foot to lift or the person would collapse. Thus, depending on the phase, the same sensory input can cause the foot to be lifted higher or held more firmly to the ground. "This change in motor response as a function of motor pattern phase is called reflex reversal, and has been observed in invertebrates (DiCaprio and Clarac, 1981) and vertebrates (Forssberg et al., 1977). How this process occurs is poorly understood, but again two possibilities exist. One is that sensory input is appropriately routed to different CPG neurons as a function of motor pattern phase. The other is that the input reaches the same neurons at all phases, but that, as a consequence of the way in which the network transforms the input, network response varies appropriately as a function of motor pattern phase." [3]

A study by Gottschall and Nichols examined the hindlimb of a decerebrate cat during walking (a CPG controlled function) in response to changes in head pitch. This study describes the differences in gait and body position of cats walking uphill, downhill and on level surfaces. Proprioceptive (Golgi tendon organs and muscle spindles) and exteroreceptive (optic, vestibular and cutaneous) receptors work alone or in combination to adjust the CPG to sensory feedback. The study explored the effects of neck proprioceptors (giving information about the relative location of the head and body) and vestibular receptors (giving information about the orientation of the head relative to gravity). Decerebrate cats were made to walk on a level surface with their heads level, tilted up or tilted down. Comparing the decerebrate cats to normal cats showed similar EMG patterns during level walking and EMG patterns that reflected downhill walking with the head titled up and uphill walking with the head tilted down. This study proved that neck proprioceptors and vestibular receptors contribute sensory feedback that alters the gait of the animal. This information may be useful for treatment of gait disorders. [50]

Functions

Central pattern generators can serve many functions. CPGs can play roles in movement, breathing, rhythm generation and other oscillatory functions. Below are several key functions of CPGs.

Locomotion

As early as 1911, it was recognized, by the experiments of Thomas Graham Brown, that the basic pattern of stepping can be produced by the spinal cord without the need of descending commands from the cortex. [51] [52]

The first modern evidence of the central pattern generator was produced by isolating the locust nervous system and showing that it could produce a rhythmic output in isolation resembling that of the locust in flight. This was discovered by Wilson in 1961. [3] Since that time, evidence has arisen for the presence of central pattern generators in vertebrate animals, starting with work on the cat in the 1960s by Elzbieta Jankowska in Gothenburg, who provided the first evidence for a spinal cord CPG. This section addresses the role of the central pattern generator in locomotion for the lamprey and humans.

The lamprey has been used as a model for vertebrate CPGs because, while its nervous system has a vertebrate organization, it shares many positive characteristics with invertebrates. When removed from the lamprey, the intact spinal cord can survive for days in vitro. It also has very few neurons and can be easily stimulated to produce a fictive swimming motion indicative of a central pattern generator. As early as 1983, Ayers, Carpenter, Currie and Kinch proposed that there was a CPG responsible for most undulating movements in the lamprey including swimming forward and backward, burrowing in the mud and crawling on a solid surface, that although not surprisingly did not match the activity in the intact animal, nevertheless provided the basic locomotor output. [53] The different movements have been found to be altered by neuromodulators, including serotonin in a study by Harris-Warrick and Cohen in 1985 [54] and tachykinin in a study by Parker et al. [55] in 1998. The lamprey model of CPG for locomotion has been important to the study of CPGs. Although Sten Grillner claims that the locomotor network is characterised, a claim that has seemingly been uncritically accepted by the spinal cord locomotor network field, there are in fact many missing details and Grillner cannot provide the evidence he uses to support his claims (Parker 2006). [56] [57] However, this neural circuit model [58] of the lamprey CPG, including three classes (one excitatory and two inhibitory) of neurons but omitting sub-cellular details, provides a system level understanding of the CPG-generated locomotion whose speed and direction (swimming forward, backward, or turning) are set by non-rhythmic external inputs (from the brainstem) to the circuit. [58] A general scheme of the lamprey CPG is now being used in the creation of artificial CPGs. For example, Ijspeert and Kodjabachian used Ekeberg's model for the lamprey to create artificial CPGs and simulate swimming movements in a lamprey-like substrate using controllers based on a SGOCE encoding. [59] Essentially, these are the first steps toward the use of CPGs to code for locomotion in robots. The vertebrate model of CPG has been also developed with both Hodgkin-Huxley formalism, [60] its variants [61] and control system approaches. [62] [63] For example, Yakovenko and colleagues have developed a simple mathematical model that describes basic principles proposed by T.G. Brown with integrate-to-threshold units organized with mutually inhibitory connections. This model is sufficient to describe complex properties of behavior, such as different regimes of the extensor- and flexor-dominant locomotion observed during electrical stimulation of the mesencephalic locomotor region (MLR), MLR-induced fictive locomotion. [63]

The connections between the CPGs that control each limb manage interlimb coordination and hence the gaits in quadrupedal and possibly also bipedal animals. [64] [65] [66] [67] [68] Left right coordination is mediated by commissural and fore-hind as well as diagonal coordination is mediated by long-projecting propiospinal interneurons. [69] [70] The balance of the left-right alternation (mediated genetically identified V0d and V0v neuron classes) to left-synchronization promoting commissural interneurons (potentially mediated V3 neurons) determines whether walk and trot (alternating gaits) or gallop and bound (synchronous gaits) are expressed. [64] This balance changes with increasing speed, potentially because of modulation by supraspinal drive from the MLR and mediated by the reticular formation, and causes speed dependent gait transitions characteristic for quadrupedal animals. [64] [67] [71] The walk to trot transition potentially occurs because of the stronger decrease of extension than flexion phase durations with increasing locomotor speed and could be mediated by descending diagonal inhibition through V0d long propriospinal neurons, [67] which leads to progressively increasing overlap between the diagonal limbs up until diagonal synchronization (trot). [64] Commissural and long propriospinal neurons are a likely target of supraspinal and somatosensory afferent inputs to adjust interlimb coordination and gait to different environmental and behavioral conditions. [67]

Central pattern generators also contribute to locomotion in humans. In 1994, Calancie, et al. described the "first well-defined example of a central rhythm generator for stepping in the adult human." The subject was a 37-year-old male who suffered an injury to the cervical spinal cord 17 years prior. After initial total paralysis below the neck, the subject eventually regained some movement of the arms and fingers and limited movement in the lower limbs. He had not recovered sufficiently to support his own weight. After 17 years, the subject found that when lying supine and extending his hips, his lower extremities underwent step-like movements for as long as he remained lying down. "The movements (i) involved alternating flexion and extension of his hips, knees, and ankles; (ii) were smooth and rhythmic; (iii) were forceful enough that the subject soon became uncomfortable due to excessive muscle 'tightness' and an elevated body temperature; and (iv) could not be stopped by voluntary effort." After extensive study of the subject, the experimenters concluded that "these data represent the clearest evidence to date that such a [CPG] network does exist in man." [72] Four years later, in 1998, Dimitrijevic, et al. showed that the human lumbar pattern generating networks can be activated by drive to large-diameter sensory afferents of the posterior roots. [6] When tonic electrical stimulation is applied to these fibers in motor complete spinal cord injured individuals (i.e., individuals in whom the spinal cord is functionally isolated from the brain) rhythmic, locomotor-like movement of the lower limbs can be elicited. These measurements were performed in supine position, thus minimizing peripheral feedback. Subsequent studies showed that these lumbar locomotor centers can form a large variety of rhythmic movements by combining and distributing stereotypical patterns to the numerous lower limb muscles. [7] A CPG-activating drug treatment called Spinalon, active centrally upon oral administration, has also been shown to partially reactivate spinal locomotor neurons in complete or motor-complete spinal cord-injured patients. Indeed, a double-blind, randomized, placebo-controlled study in forty-five volunteers with chronic AIS A/B injuries (between 3 months and 30 years post-trauma) lying in the supine position for safety reasons, revealed that Spinalon below maximum tolerated dose (MTD was 500/125/50 mg/kg L-DOPA/carbidopa/buspirone) was well tolerated. Preliminary evidence of efficacy was also found using videotape and electromyographic recordings since doses below MTD could acutely induce rhythmic locomotor-like leg movements in groups with Spinalon, but not in those with placebo (cornstarch). [73]

Control of locomotion

If step cycle durations and muscle activations were fixed, it would not be possible to change body velocity and adapt to varying terrain. It has been suggested that the mammalian locomotor CPG comprises a "timer" (possibly in the form of coupled oscillators) which generates step cycles of varying durations, and a "pattern formation layer," which selects and grades the activation of motor pools. [60] [74] Increasing the neural drive from the midbrain locomotor region (MLR) to the spinal CPG increases the step cycle frequency (the cadence). [75] Swing and stance phase durations co-vary in a fairly fixed relationship, with stance phases changing more than swing phases. [76]

Sensory input from the limbs may truncate or extend individual phase durations in a process akin to finite state control (in which "if-then" rules determine when state transitions occur). [77] [78] [79] For example, if a limb that is swinging forward reaches the end of swing in less time than the current CPG-generated flexor phase duration, sensory input would cause the CPG timer to terminate swing and start the stance phase. [80] [81] Furthermore, as body velocity increases, the pattern formation layer would increase muscle activation nonlinearly to provide increased load-bearing and thrust forces. It has been posited that in well-predicted movements, CPG-generated phase durations and muscle forces closely match those required by the evolving biomechanical events, minimizing the sensory corrections required. The term "neuromechanical tuning" has been coined to describe this process. [63]

Fig. 1. Schematic of the locomotor central pattern generator in the mammalian nervous system. A command signal specifying increasing body velocity descends from deep brain nuclei via the MLR to the spinal cord and drives the timing element of the spinal locomotor CPG to generate cycles of increasing cadence. Extensor phase durations change more than flexor phase durations. The command signal also drives the pattern formation layer to generate cyclical activation of flexor and extensor motoneurons. Loading of the activated muscles (e.g. supporting the moving body mass) is resisted by the muscles' intrinsic spring-like properties. This is equivalent to displacement feedback. Force and displacement sensed by muscle spindle and Golgi tendon organ afferents reflexly activate motoneurons. A key role of these afferents is to adjust the timing of phase transitions, presumably by influencing or overriding the CPG timer. Modified from Locomotor CPG schematic.jpg
Fig. 1. Schematic of the locomotor central pattern generator in the mammalian nervous system. A command signal specifying increasing body velocity descends from deep brain nuclei via the MLR to the spinal cord and drives the timing element of the spinal locomotor CPG to generate cycles of increasing cadence. Extensor phase durations change more than flexor phase durations. The command signal also drives the pattern formation layer to generate cyclical activation of flexor and extensor motoneurons. Loading of the activated muscles (e.g. supporting the moving body mass) is resisted by the muscles' intrinsic spring-like properties. This is equivalent to displacement feedback. Force and displacement sensed by muscle spindle and Golgi tendon organ afferents reflexly activate motoneurons. A key role of these afferents is to adjust the timing of phase transitions, presumably by influencing or overriding the CPG timer. Modified from

Fig. 1 provides a simplified schematic that summarizes these proposed mechanisms. A command specifying desired body velocity descends from higher centers to the MLR, which drives the spinal locomotor CPG. The CPG timer produces the appropriate cadence and phase durations and the pattern formation layer modulates the motoneuronal outputs. [82] The activated muscles resist stretch through their own intrinsic biomechanical properties, providing a rapid form of length and velocity feedback control. Reflexes mediated by Golgi tendon organ and other afferents provide additional load compensation, but the main role of sensory input may be to adjust or override the CPG at stance-swing-stance transitions. [83]

As described in Neuromodulation, the human locomotive CPG is very adaptable and can respond to sensory input. It receives input from the brainstem as well as from the environment to keep the network regulated. Newer studies have not only confirmed the presence of the CPG for human locomotion, but also confirmed its robustness and adaptability. For example, Choi and Bastian showed that the networks responsible for human walking are adaptable on short and long timescales. They showed adaptation to different gait patterns and different walking contexts. Also, they showed that different motor patterns can adapt independently. Adults could even walk on treadmills going in a different direction for each leg. This study showed that independent networks control forward and backward walking and that networks controlling each leg can adapt independently and be trained to walk independently. [84] Thus, humans also possess a central pattern generator for locomotion that is capable not only of rhythmic pattern generation but also remarkable adaptation and usefulness in a wide variety of situations.

Respiration

A three-phase model is the classical view of the respiratory CPG. The phases of the respiratory CPG are characterized by the rhythmic activity of: (1) the phrenic nerve during inspiration; (2) recurrent laryngeal nerve branches that innervate the thyroarytenoid muscle during the last stage of expiration; (3) the internal intercostal nerve branches that innervate the triangularis sterni muscle during the second stage of expiration. The rhythmicity of these nerves is classically viewed as originating from a single rhythm generator. In this model, phasing is produced by reciprocal synaptic inhibition between groups of sequentially active interneurons.

Nevertheless, an alternative model has been proposed [85] reinforced by certain experimental data. According to this model, respiratory rhythm is generated by two coupled anatomically distinct rhythm generators, one in the pre-Boetzinger complex [86] and the other in the retrotrapezoid nucleus / parafacial respiratory group. Further survey provided evidence to the hypothesis that one of the networks is responsible for inspiration rhythm and the other for expiration rhythm. Therefore, inspiration and expiration are distinct functions and one does not induce the other, as is the common belief, but one of two dominates the behavior by generating a faster rhythm.

Swallowing

Swallowing involves the coordinated contraction of more than 25 pairs of muscles in the oropharynx, larynx and esophagus, which are active during an oropharyngeal phase, followed by the primary esophageal peristalsis. Swallowing depends on a deglutition centre, a CPG located in the medulla oblongata, which involves several brain stem motor nuclei and two main groups of interneurons: a dorsal swallowing group (DSG) in the nucleus tractus solitarii and a ventral swallowing group (VSG) located in the ventrolateral medulla above the nucleus ambiguus. Neurons in the DSG are responsible for the generation of the swallowing pattern, while those in the VSG distribute the commands to the various motoneuronal pools. As in other CPGs, the functioning of the central network can be modulated by peripheral and central inputs, so that the swallowing pattern is adapted to the size of the bolus.

Within this network, central inhibitory connections play a major role, producing a rostrocaudal inhibition that parallels the rostrocaudal anatomy of the swallowing tract. Thus, when the neurons controlling the proximal parts of the tract are active, those that command more distal parts are inhibited. Apart from the type of connection between the neurons, intrinsic properties of the neurons, especially those of NTS neurons, probably also contribute to the shaping and timing of the swallowing pattern.

The swallowing CPG is a flexible CPG. This means that at least some of the swallowing neurons may be multifunctional neurons and belong to pools of neurons that are common to several CPGs. One such CPG is the respiratory one, which has been observed interacting with the swallowing CPG. [87] [88]

Rhythm generators

Central pattern generators can also play a role in rhythm generation for other functions in vertebrates. For example, the rat vibrissa system uses an unconventional CPG for whisking movements. "Like other CPGs, the whisking generator can operate without cortical input or sensory feedback. However, unlike other CPGs, vibrissa motoneurons actively participate in rhythmogenesis by converting tonic serotonergic inputs into the patterned motor output responsible for movement of the vibrissae." [89] Breathing is another non-locomotive function of central pattern generators. For example, larval amphibians accomplish gas exchange largely through rhythmic ventilation of the gills. A study showed that lung ventilation in the tadpole brainstem may be driven by a pacemaker-like mechanism, whereas the respiratory CPG adapts in the adult bullfrog as it matures. [90] Thus, CPGs hold a broad range of functions in the vertebrate animal and are widely adaptable and variable with age, environment and behavior.

Mechanism

Rhythmicity in CPGs can also result from time-dependent cellular properties such as adaptation, delayed excitation, and post-inhibitory rebound (PIR). PIR is an intrinsic property that elicits rhythmic electrical activity by depolarizing the membrane once hyperpolarizing stimulus is gone. It can be produced by several mechanisms including hyperpolarization-activated cation current (Ih), low-voltage activated calcium current, [91] or deinactivation of depolarization-activated inward currents. [92] Once inhibition has ceased, this period of PIR can be explained as the time with increased neuronal excitability. It is the property of many CNS neurons that sometimes results in action potential "bursts" following immediately after inhibitory synaptic input. "Because of this, it has been suggested that PIR may contribute to the maintenance of oscillatory activity in neural networks that are characterized by mutual inhibitory connections, like those involved in locomotor behaviors. In addition, PIR is often included as an element in computational models of neural networks that involve mutual inhibition". [93] For example, the "PIR in crayfish stretch receptor neurons is caused by recovery from adaptation during the course of inhibitory hyperpolarization. One feature of that system is that PIR only occurs if the hyperpolarization is imposed on a background of excitation, caused in this case by stretch. They also found that PIR can be elicited in the stretch receptor by hyperpolarizing current pulses. This was an important finding because it showed that PIR is an intrinsic property of the postsynaptic neuron, related to the membrane potential change associated with inhibition but independent of transmitter receptors or presynaptic properties. The latter conclusion has stood the test of time, marking PIR as a robust property of CNS neurons in a wide variety of contexts." [94] This cellular property can most easily be seen in the Lamprey neural circuit. The swimming movement is produced by alternating neural activity between the left and right side of the body, causing it to bend back and forth while creating oscillating movements. While the Lamprey is bent to the left, there is reciprocal inhibition on the right side causing it to relax due to hyperpolarization. Immediately after this hyperopolarizing stimulus, the interneurons use post-inhibitory rebound to initiate activity in the right side. Depolarization of the membrane causes it to contract while reciprocal inhibition is now applied to the left side.

Functions in invertebrates

CPGs play a similarly critical role in coordinating behaviors in invertebrates, and studying invertebrate CPGs with fewer numbers of neurons has helped establish general principles of CPGs and their organization in the nervous system. One model circuit for studying CPGs is the stomatogastric ganglion in crabs and lobsters, a ~30 neuron circuit containing two CPGs that generate rhythmic motor output for chewing and digesting food. [11] Dissection of these circuits has revealed neural mechanisms of CPGs. For example, the pyloric CPG - which controls the contraction and dilation of the pylorus - contains a set of conditional oscillatory neurons and one pacemaker neuron that fires rhythmically when dissected out of the circuit. [11] Coordinated rhythmic behaviors like walking, flight and grooming are also controlled by CPGs in some invertebrates. [95] [96] [97] [98] Continued research into how CPGs control these behaviors has revealed a nested CPG architecture to control rhythmic behaviors across various timescales. [99] Other examples of CPGs in invertebrate animals include a CPG modulating reflexive withdrawal, escape swimming and crawling in the mollusc Tritonia, [100] and to control the heartbeat of leeches. [101] Central pattern generators play a broad role in all animals and show amazing variability and adaptability in almost all cases.

Alternative interpretations

One theory that reconciles the role of sensory feedback during rhythmic locomotion is to redefine CPGs as "state estimators" as opposed to rhythm generators. [102] Through this perspective, CPGs are an intrinsic spinal processor that corrects imperfect sensory feedback and adapts central input to this optimized peripheral input. [4] Models using this framework are able to accomplish rhythmic behavior as well as fictive locomotion without incorporating independent rhythm generators.

Related Research Articles

<span class="mw-page-title-main">Motor neuron</span> Nerve cell sending impulse to muscle

A motor neuron is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. There are two types of motor neuron – upper motor neurons and lower motor neurons. Axons from upper motor neurons synapse onto interneurons in the spinal cord and occasionally directly onto lower motor neurons. The axons from the lower motor neurons are efferent nerve fibers that carry signals from the spinal cord to the effectors. Types of lower motor neurons are alpha motor neurons, beta motor neurons, and gamma motor neurons.

In biology, a reflex, or reflex action, is an involuntary, unplanned sequence or action and nearly instantaneous response to a stimulus.

<span class="mw-page-title-main">Grey columns</span> Three columns of grey matter within the spinal cord

The grey columns are three regions of the somewhat ridge-shaped mass of grey matter in the spinal cord. These regions present as three columns: the anterior grey column, the posterior grey column, and the lateral grey column, all of which are visible in cross-section of the spinal cord.

<span class="mw-page-title-main">Gait (human)</span> A pattern of limb movements made during locomotion

A gait is a manner of limb movements made during locomotion. Human gaits are the various ways in which humans can move, either naturally or as a result of specialized training. Human gait is defined as bipedal forward propulsion of the center of gravity of the human body, in which there are sinuous movements of different segments of the body with little energy spent. Various gaits are characterized by differences in limb movement patterns, overall velocity, forces, kinetic and potential energy cycles, and changes in contact with the ground.

Motor control is the regulation of movements in organisms that possess a nervous system. Motor control includes conscious voluntary movements, subconscious muscle memory and involuntary reflexes, as well as instinctual taxis.

<span class="mw-page-title-main">Scratch reflex</span> Response to activation of sensory neurons

The scratch reflex is an automatic response to the activation of sensory neurons located on the surface of the body. Sensory neurons can be activated via stimulation, such as a parasite on the body, but can also be activated by responding to a chemical stimulus that produces an itching sensation. During a scratch reflex, a limb reaches toward and rubs against the site on the body surface that has been stimulated. The scratch reflex has been extensively studied to understand the functioning of neural networks in vertebrates. Despite decades of research, key aspects of the scratch reflex are still unknown, such as the neural mechanisms by which the reflex is terminated.

<span class="mw-page-title-main">Ventral nerve cord</span> Structure of the invertebrate central nervous system

The ventral nerve cord is a major structure of the invertebrate central nervous system. It is the functional equivalent of the vertebrate spinal cord. The ventral nerve cord coordinates neural signaling from the brain to the body and vice versa, integrating sensory input and locomotor output. Because arthropods have an open circulatory system, decapitated insects can still walk, groom, and mate — illustrating that the circuitry of the ventral nerve cord is sufficient to perform complex motor programs without brain input.

The preBötzinger complex, often abbreviated as preBötC, is a functionally and anatomically specialized site in the ventral-lateral region of the lower medulla oblongata. The preBötC is part of the ventral respiratory group of respiratory related interneurons. Its foremost function is to generate the inspiratory breathing rhythm in mammals. In addition, the preBötC is widely and paucisynaptically connected to higher brain centers that regulate arousal and excitability more generally such that respiratory brain function is intimately connected with many other rhythmic and cognitive functions of the brain and central nervous system. Further, the preBötC receives mechanical sensory information from the airways that encode lung volume as well as pH, oxygen, and carbon dioxide content of circulating blood and the cerebrospinal fluid.

The Mauthner cells are a pair of big and easily identifiable neurons located in the rhombomere 4 of the hindbrain in fish and amphibians that are responsible for a very fast escape reflex. The cells are also notable for their unusual use of both chemical and electrical synapses.

<span class="mw-page-title-main">Undulatory locomotion</span> Wave-like animal movement method

Undulatory locomotion is the type of motion characterized by wave-like movement patterns that act to propel an animal forward. Examples of this type of gait include crawling in snakes, or swimming in the lamprey. Although this is typically the type of gait utilized by limbless animals, some creatures with limbs, such as the salamander, forgo use of their legs in certain environments and exhibit undulatory locomotion. In robotics this movement strategy is studied in order to create novel robotic devices capable of traversing a variety of environments.

<span class="mw-page-title-main">Spinal locomotion</span>

Spinal locomotion results from intricate dynamic interactions between a central program in lower thoracolumbar spine and proprioceptive feedback from body in the absence of central control by brain as in complete spinal cord injury (SCI). Following SCI, the spinal circuitry below the lesion site does not become silent; rather, it continues to maintain active and functional neuronal properties, although in a modified manner.

<span class="mw-page-title-main">Neural substrate of locomotor central pattern generators in mammals</span>

Central pattern generators are biological neural networks organized to produce any rhythmic output without requiring a rhythmic input. In mammals, locomotor CPGs are organized in the lumbar and cervical segments of the spinal cord, and are used to control rhythmic muscle output in the arms and legs. Certain areas of the brain initiate the descending neural pathways that ultimately control and modulate the CPG signals. In addition to this direct control, there exist different feedback loops that coordinate the limbs for efficient locomotion and allow for the switching of gaits under appropriate circumstances.

When treating a person with a spinal cord injury, repairing the damage created by injury is the ultimate goal. By using a variety of treatments, greater improvements are achieved, and, therefore, treatment should not be limited to one method. Furthermore, increasing activity will increase his/her chances of recovery.

The neuroscience of rhythm refers to the various forms of rhythm generated by the central nervous system (CNS). Nerve cells, also known as neurons in the human brain are capable of firing in specific patterns which cause oscillations. The brain possesses many different types of oscillators with different periods. Oscillators are simultaneously outputting frequencies from .02 Hz to 600 Hz. It is now well known that a computer is capable of running thousands of processes with just one high-frequency clock. Humans have many different clocks as a result of evolution. Prior organisms had no need for a fast-responding oscillator. This multi-clock system permits quick response to constantly changing sensory input while still maintaining the autonomic processes that sustain life. This method modulates and controls a great deal of bodily functions.

<span class="mw-page-title-main">Spinal interneuron</span> Interneuron relaying signals between sensory and motor neurons in the spinal cord

A spinal interneuron, found in the spinal cord, relays signals between (afferent) sensory neurons, and (efferent) motor neurons. Different classes of spinal interneurons are involved in the process of sensory-motor integration. Most interneurons are found in the grey column, a region of grey matter in the spinal cord.

<span class="mw-page-title-main">Mesencephalic locomotor region</span>

The mesencephalic locomotor region (MLR) is a functionally defined area of the midbrain that is associated with the initiation and control of locomotor movements in vertebrate species.

<span class="mw-page-title-main">Ole Kiehn</span> Danish-Swedish neuroscientist (born 1958)

Ole Kiehn is a Danish-Swedish neuroscientist. He is Professor of Integrative Neuroscience at the Department of Neuroscience, University of Copenhagen, Denmark, and professor of neurophysiology at Karolinska Institute, Sweden.

Proprioception refers to the sensory information relayed from muscles, tendons, and skin that allows for the perception of the body in space. This feedback allows for more fine control of movement. In the brain, proprioceptive integration occurs in the somatosensory cortex, and motor commands are generated in the motor cortex. In the spinal cord, sensory and motor signals are integrated and modulated by motor neuron pools called central pattern generators (CPGs). At the base level, sensory input is relayed by muscle spindles in the muscle and Golgi tendon organs (GTOs) in tendons, alongside cutaneous sensors in the skin.

A descending neuron is a neuron that conveys signals from the brain to neural circuits in the spinal cord (vertebrates) or ventral nerve cord (invertebrates). As the sole conduits of information between the brain and the body, descending neurons play a key role in behavior. Their activity can initiate, maintain, modulate, and terminate behaviors such as locomotion. Because the number of descending neurons is several orders of magnitude smaller than the number of neurons in either the brain or spinal cord/ventral nerve cord, this class of cells represents a critical bottleneck in the flow of information from sensory systems to motor circuits.

<span class="mw-page-title-main">Interlimb coordination</span> Coordination of the left and right limbs

Interlimb coordination is the coordination of the left and right limbs. It could be classified into two types of action: bimanual coordination and hands or feet coordination. Such coordination involves various parts of the nervous system and requires a sensory feedback mechanism for the neural control of the limbs. A model can be used to visualize the basic features, the control centre of locomotor movements, and the neural control of interlimb coordination. This coordination mechanism can be altered and adapted for better performance during locomotion in adults and for the development of motor skills in infants. The adaptive feature of interlimb coordination can also be applied to the treatment for CNS damage from stroke and the Parkinson's disease in the future.

References

  1. Wojcik, Jeremy; Clewley, Robert; Shilnikov, Andrey (16 May 2011). "Order parameter for bursting polyrhythms in multifunctional central pattern generators". Physical Review E. 83 (5): 056209. Bibcode:2011PhRvE..83e6209W. doi: 10.1103/PhysRevE.83.056209 . PMID   21728632.
  2. Ferrario, Andrea; Merrison-Hort, Robert; Soffe, Stephen R.; Li, Wen-Chang; Borisyuk, Roman (2018-07-18). "Bifurcations of Limit Cycles in a Reduced Model of the Xenopus Tadpole Central Pattern Generator". The Journal of Mathematical Neuroscience. 8 (1): 10. doi: 10.1186/s13408-018-0065-9 . ISSN   2190-8567. PMC   6051957 . PMID   30022326.
  3. 1 2 3 4 5 6 7 Hooper, Scott L. (1999–2010). "Central Pattern Generators". Encyclopedia of Life Sciences. John Wiley & Sons. doi:10.1038/npg.els.0000032. ISBN   978-0-470-01590-2.
  4. 1 2 3 Kuo, AD (April 2002). "The relative roles of feedforward and feedback in the control of rhythmic movements". Motor Control. 6 (2): 129–45. doi:10.1123/mcj.6.2.129. PMID   12122223.
  5. Guertin, PA. (January 2019). "Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences". Reviews in the Neurosciences. 30 (2): 107–164. doi:10.1515/revneuro-2017-0102. PMID   30543520. S2CID   56493287.
  6. 1 2 Dimitrijevic MR, Gerasimenko Y, Pinter MM (November 1998). "Evidence for a spinal central pattern generator in humans". Annals of the New York Academy of Sciences. 860 (1): 360–76. Bibcode:1998NYASA.860..360D. doi:10.1111/j.1749-6632.1998.tb09062.x. PMID   9928325. S2CID   102514.
  7. 1 2 Danner SM, Hofstoetter US, Freundl B, Binder H, Mayr W, Rattay F, Minassian K (March 2015). "Human spinal locomotor control is based on flexibly organized burst generators". Brain. 138 (Pt 3): 577–88. doi:10.1093/brain/awu372. PMC   4408427 . PMID   25582580.
  8. Minassian, Karen; Hofstoetter, Ursula S.; Dzeladini, Florin; Guertin, Pierre A.; Ijspeert, Auke (2017). "The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?". The Neuroscientist. 23 (6): 649–663. doi:10.1177/1073858417699790. PMID   28351197. S2CID   33273662.
  9. Hultborn H, Nielsen JB (February 2007). "Spinal control of locomotion--from cat to man". Acta Physiologica. 189 (2): 111–21. doi:10.1111/j.1748-1716.2006.01651.x. PMID   17250563. S2CID   41080512.
  10. Guertin PA (December 2009). "The mammalian central pattern generator for locomotion". Brain Research Reviews. 62 (4): 345–56. doi:10.1016/j.brainresrev.2009.08.002. PMID   19720083. S2CID   9374670.
  11. 1 2 3 Selverston, Allen I. (2010-08-12). "Invertebrate central pattern generator circuits". Philosophical Transactions of the Royal Society B: Biological Sciences. 365 (1551): 2329–2345. doi:10.1098/rstb.2009.0270. ISSN   0962-8436. PMC   2894947 . PMID   20603355.
  12. 1 2 3 4 Marder, Eve; Bucher, Dirk (2001-11-27). "Central pattern generators and the control of rhythmic movements". Current Biology. 11 (23): R986–R996. Bibcode:2001CBio...11.R986M. doi: 10.1016/S0960-9822(01)00581-4 . ISSN   0960-9822. PMID   11728329. S2CID   1294374.
  13. Marder, E.; Eisen, J. S. (June 1984). "Electrically coupled pacemaker neurons respond differently to same physiological inputs and neurotransmitters". Journal of Neurophysiology. 51 (6): 1362–1374. doi:10.1152/jn.1984.51.6.1362. ISSN   0022-3077. PMID   6145758.
  14. Smith, J. C.; Ellenberger, H. H.; Ballanyi, K.; Richter, D. W.; Feldman, J. L. (1991-11-01). "Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals". Science. 254 (5032): 726–729. Bibcode:1991Sci...254..726S. doi:10.1126/science.1683005. ISSN   0036-8075. PMC   3209964 . PMID   1683005.
  15. Wang, Xiao-Jing; Rinzel, John (January 1992). "Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons". Neural Computation. 4 (1): 84–97. doi:10.1162/neco.1992.4.1.84. ISSN   0899-7667. S2CID   33448885.
  16. Brown, T. Graham (1914-03-31). "On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system". The Journal of Physiology. 48 (1): 18–46. doi:10.1113/jphysiol.1914.sp001646. ISSN   0022-3751. PMC   1420503 . PMID   16993247.
  17. Satterlie, Richard A. (1985-07-26). "Reciprocal Inhibition and Postinhibitory Rebound Produce Reverberation in a Locomotor Pattern Generator". Science. 229 (4711): 402–404. Bibcode:1985Sci...229..402S. doi:10.1126/science.229.4711.402. PMID   17795901. S2CID   44315274.
  18. Roberts, A.; Soffe, S. R.; Wolf, E. S.; Yoshida, M.; Zhao, F. Y. (1998-11-16). "Central circuits controlling locomotion in young frog tadpoles". Annals of the New York Academy of Sciences. 860 (1): 19–34. Bibcode:1998NYASA.860...19R. doi:10.1111/j.1749-6632.1998.tb09036.x. ISSN   0077-8923. PMID   9928299. S2CID   24563208.
  19. Grillner, S.; Wallén, P. (1999). "Chapter 26 on the Cellular Bases of Vertebrate Locomotion". Peripheral and Spinal Mechanisms in the Neural Control of Movement. Progress in Brain Research. Vol. 123. pp. 297–309. doi:10.1016/s0079-6123(08)62865-4. ISBN   9780444502889. ISSN   0079-6123. PMID   10635725.
  20. Beierlein, Michael; Gibson, Jay R.; Connors, Barry W. (September 2000). "A network of electrically coupled interneurons drives synchronized inhibition in neocortex". Nature Neuroscience. 3 (9): 904–910. doi:10.1038/78809. ISSN   1546-1726. PMID   10966621.
  21. Song, Jianren; Ampatzis, Konstantinos; Björnfors, E. Rebecka; El Manira, Abdeljabbar (January 2016). "Motor neurons control locomotor circuit function retrogradely via gap junctions". Nature. 529 (7586): 399–402. doi:10.1038/nature16497. ISSN   1476-4687. PMID   26760208.
  22. Choi, Ukjin; Wang, Han; Hu, Mingxi; Kim, Sungjin; Sieburth, Derek (2021-05-18). "Presynaptic coupling by electrical synapses coordinates a rhythmic behavior by synchronizing the activities of a neuron pair". Proceedings of the National Academy of Sciences. 118 (20). doi: 10.1073/pnas.2022599118 . ISSN   0027-8424. PMC   8157971 . PMID   33972428.
  23. Rancic, Vladimir; Gosgnach, Simon (January 2021). "Recent Insights into the Rhythmogenic Core of the Locomotor CPG". International Journal of Molecular Sciences. 22 (3): 1394. doi: 10.3390/ijms22031394 . ISSN   1422-0067. PMID   33573259.
  24. Tresch, Matthew C.; Kiehn, Ole (June 2000). "Motor coordination without action potentials in the mammalian spinal cord". Nature Neuroscience. 3 (6): 593–599. doi:10.1038/75768. ISSN   1546-1726. PMID   10816316.
  25. Wilson, J. M.; Cowan, A. I.; Brownstone, R. M. (October 2007). "Heterogeneous Electrotonic Coupling and Synchronization of Rhythmic Bursting Activity in Mouse Hb9 Interneurons". Journal of Neurophysiology. 98 (4): 2370–2381. doi:10.1152/jn.00338.2007. ISSN   0022-3077. PMID   17715199.
  26. Song, Jianren; Ampatzis, Konstantinos; Björnfors, E. Rebecka; El Manira, Abdeljabbar (January 2016). "Motor neurons control locomotor circuit function retrogradely via gap junctions". Nature. 529 (7586): 399–402. doi:10.1038/nature16497. ISSN   1476-4687. PMID   26760208.
  27. Nadim, Farzan; Manor, Yair (2000-12-01). "The role of short-term synaptic dynamics in motor control". Current Opinion in Neurobiology. 10 (6): 683–690. doi:10.1016/S0959-4388(00)00159-8. ISSN   0959-4388. PMID   11240276. S2CID   19397634.
  28. Bucher, Dirk; Haspel, Gal; Golowasch, Jorge; Nadim, Farzan (2015-12-23). "Central Pattern Generators". eLS: 1–12. doi:10.1002/9780470015902.a0000032.pub2. ISBN   9780470016176.
  29. Li, Wen-Chang; Sautois, Bart; Roberts, Alan; Soffe, Stephen R. (2007-11-07). "Reconfiguration of a Vertebrate Motor Network: Specific Neuron Recruitment and Context-Dependent Synaptic Plasticity". Journal of Neuroscience. 27 (45): 12267–12276. doi:10.1523/JNEUROSCI.3694-07.2007. ISSN   0270-6474. PMC   6673254 . PMID   17989292.
  30. Rubin, Jonathan E.; Hayes, John A.; Mendenhall, Jeffrey L.; Del Negro, Christopher A. (2009-02-24). "Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations". Proceedings of the National Academy of Sciences of the United States of America. 106 (8): 2939–2944. Bibcode:2009PNAS..106.2939R. doi: 10.1073/pnas.0808776106 . ISSN   0027-8424. PMC   2636730 . PMID   19196976.
  31. Kiehn O, Butt SJ (July 2003). "Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord". Prog. Neurobiol. 70 (4): 347–61. doi:10.1016/S0301-0082(03)00091-1. PMID   12963092. S2CID   22793900.
  32. Bidaye, Salil S.; Bockemühl, Till; Büschges, Ansgar (2018-02-01). "Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms". Journal of Neurophysiology. 119 (2): 459–475. doi: 10.1152/jn.00658.2017 . ISSN   1522-1598. PMID   29070634.
  33. Jean A (April 2001). "Brain stem control of swallowing: neuronal network and cellular mechanisms". Physiol. Rev. 81 (2): 929–69. doi:10.1152/physrev.2001.81.2.929. PMID   11274347. S2CID   17609854.
  34. Cunningham ET, Sawchenko PE (February 2000). "Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing". J. Comp. Neurol. 417 (4): 448–66. doi:10.1002/(SICI)1096-9861(20000221)417:4<448::AID-CNE5>3.0.CO;2-S. PMID   10701866. S2CID   2403930.
  35. 1 2 3 Goulding, Martyn (July 2009). "Circuits controlling vertebrate locomotion: moving in a new direction". Nature Reviews Neuroscience. 10 (7): 507–518. doi:10.1038/nrn2608. ISSN   1471-0048. PMC   2847453 . PMID   19543221.
  36. Berg, Eva M.; Björnfors, E. Rebecka; Pallucchi, Irene; Picton, Laurence D.; El Manira, Abdeljabbar (2018). "Principles Governing Locomotion in Vertebrates: Lessons From Zebrafish". Frontiers in Neural Circuits. 12: 73. doi: 10.3389/fncir.2018.00073 . ISSN   1662-5110. PMC   6146226 . PMID   30271327.
  37. Jessell, Thomas M. (October 2000). "Neuronal specification in the spinal cord: inductive signals and transcriptional codes". Nature Reviews Genetics. 1 (1): 20–29. doi:10.1038/35049541. ISSN   1471-0064. PMID   11262869. S2CID   205012382.
  38. 1 2 3 Gosgnach, Simon; Bikoff, Jay B.; Dougherty, Kimberly J.; El Manira, Abdeljabbar; Lanuza, Guillermo M.; Zhang, Ying (2017-11-08). "Delineating the Diversity of Spinal Interneurons in Locomotor Circuits". The Journal of Neuroscience. 37 (45): 10835–10841. doi:10.1523/JNEUROSCI.1829-17.2017. ISSN   1529-2401. PMC   6596484 . PMID   29118212.
  39. Rybak, Ilya A.; Dougherty, Kimberly J.; Shevtsova, Natalia A. (2015-09-22). "Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons". eNeuro. 2 (5): ENEURO.0069–15.2015. doi:10.1523/ENEURO.0069-15.2015. ISSN   2373-2822. PMC   4603253 . PMID   26478909.
  40. 1 2 Harris-Warrick, Ronald M. (October 2011). "Neuromodulation and Flexibility in Central Pattern Generator Networks". Current Opinion in Neurobiology. 21 (5): 685–692. doi:10.1016/j.conb.2011.05.011. ISSN   0959-4388. PMC   3171584 . PMID   21646013.
  41. Katz, Paul S (1995-12-01). "Intrinsic and extrinsic neuromodulation of motor circuits". Current Opinion in Neurobiology. 5 (6): 799–808. doi:10.1016/0959-4388(95)80109-X. ISSN   0959-4388. PMID   8805409. S2CID   43818751.
  42. Schmidt, Brian J; Jordan, Larry M (2000-11-15). "The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord". Brain Research Bulletin. 53 (5): 689–710. doi:10.1016/S0361-9230(00)00402-0. ISSN   0361-9230. PMID   11165804. S2CID   20952920.
  43. Nadim, Farzan; Bucher, Dirk (2014-12-01). "Neuromodulation of neurons and synapses". Current Opinion in Neurobiology. SI: Neuromodulation. 29: 48–56. doi:10.1016/j.conb.2014.05.003. ISSN   0959-4388. PMC   4252488 . PMID   24907657.
  44. 1 2 Marder, Eve (2012-10-04). "Neuromodulation of Neuronal Circuits: Back to the Future". Neuron. 76 (1): 1–11. doi:10.1016/j.neuron.2012.09.010. ISSN   0896-6273. PMC   3482119 . PMID   23040802.
  45. Blitz, Dawn M.; Christie, Andrew E.; Coleman, Melissa J.; Norris, Brian J.; Marder, Eve; Nusbaum, Michael P. (1999-07-01). "Different Proctolin Neurons Elicit Distinct Motor Patterns from a Multifunctional Neuronal Network". Journal of Neuroscience. 19 (13): 5449–5463. doi:10.1523/JNEUROSCI.19-13-05449.1999. ISSN   0270-6474. PMC   6782314 . PMID   10377354.
  46. Harris-Warrick RM, Johnson BR, Peck JH, Kloppenburg P, Ayali A, Skarbinski J (November 1998). "Distributed effects of dopamine modulation in the crustacean pyloric network". Annals of the New York Academy of Sciences. 860 (1 NeuronaL Mech): 155–67. Bibcode:1998NYASA.860..155H. doi:10.1111/j.1749-6632.1998.tb09046.x. PMID   9928309. S2CID   23623832.
  47. Harris-Warrick, Ronald M. (October 2011). "Neuromodulation and Flexibility in Central Pattern Generator Networks". Current Opinion in Neurobiology. 21 (5): 685–692. doi:10.1016/j.conb.2011.05.011. ISSN   0959-4388. PMC   3171584 . PMID   21646013.
  48. Dickinson, Patsy S.; Mecsas, Carol; Marder, Eve (March 1990). "Neuropeptide fusion of two motor-pattern generator circuits". Nature. 344 (6262): 155–158. Bibcode:1990Natur.344..155D. doi:10.1038/344155a0. ISSN   1476-4687. PMID   2308633. S2CID   4260725.
  49. Hooper, Scott L.; Moulins, Maurice (1989-06-30). "Switching of a Neuron from One Network to Another by Sensory-Induced Changes in Membrane Properties". Science. 244 (4912): 1587–1589. Bibcode:1989Sci...244.1587H. doi:10.1126/science.2740903. PMID   2740903.
  50. Gottschall JS, Nichols TR (September 2007). "Head pitch affects muscle activity in the decerebrate cat hindlimb during walking". Exp Brain Res. 182 (1): 131–5. doi:10.1007/s00221-007-1084-z. PMC   3064865 . PMID   17690872.
  51. Graham-Brown, T. (1911). "The intrinsic factors in the act of progression in the mammal". Philosophical Transactions of the Royal Society of London B. 84 (572): 308–319. Bibcode:1911RSPSB..84..308B. doi:10.1098/rspb.1911.0077.
  52. Whelan PJ (December 2003). "Developmental aspects of spinal locomotor function: insights from using the in vitro mouse spinal cord preparation". J. Physiol. 553 (Pt 3): 695–706. doi:10.1113/jphysiol.2003.046219. PMC   2343637 . PMID   14528025.
  53. Ayers J, Carpenter GA, Currie S, Kinch J (September 1983). "Which behavior does the lamprey central motor program mediate?". Science. 221 (4617): 1312–4. Bibcode:1983Sci...221.1312A. doi:10.1126/science.6137060. PMID   6137060.
  54. Harris-Warrick R, Cohen A (1985) Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord. J Exp Biol 116:27-46.
  55. Parker D, Zhang W, Grillner S (1998). "Substance P modulates NMDA responses and causes long-term protein synthesis-dependent modulation of the lamprey locomotor network". J Neurosci. 18 (12): 4800–4813. doi: 10.1523/JNEUROSCI.18-12-04800.1998 . PMC   6792700 . PMID   9614253.
  56. Parker D (January 2006). "Complexities and uncertainties of neuronal network function". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 361 (1465): 81–99. doi:10.1098/rstb.2005.1779. PMC   1626546 . PMID   16553310.
  57. Parker D (August 2010). "Neuronal network analyses: premises, promises and uncertainties". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1551): 2315–28. doi:10.1098/rstb.2010.0043. PMC   2894952 . PMID   20603354.
  58. 1 2 Zhaoping, Li; Lewis, Alex; Scarpetta, Silvia (2004-05-14). "Mathematical Analysis and Simulations of the Neural Circuit for Locomotion in Lampreys". Physical Review Letters. 92 (19): 198106. arXiv: q-bio/0404012 . Bibcode:2004PhRvL..92s8106Z. doi:10.1103/PhysRevLett.92.198106. PMID   15169452. S2CID   7790379.
  59. Ijspeert, AJ; Kodjabachian, J (1999). "Evolution and development of a central pattern generator for the swimming of a lamprey". Artificial Life. 5 (3): 247–69. doi:10.1162/106454699568773. PMID   10648954.
  60. 1 2 Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (December 2006). "Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion". The Journal of Physiology. 577 (Pt 2): 617–39. doi:10.1113/jphysiol.2006.118703. PMC   1890439 . PMID   17008376.
  61. Bashor DP, Dai Y, Kriellaars DJ, Jordan LM (November 1998). "Pattern generators for muscles crossing more than one joint". Annals of the New York Academy of Sciences. 860 (1 Neuronal Mech): 444–7. Bibcode:1998NYASA.860..444B. CiteSeerX   10.1.1.215.3329 . doi:10.1111/j.1749-6632.1998.tb09071.x. PMID   9928334. S2CID   7322093.
  62. Yakovenko S, McCrea DA, Stecina K, Prochazka A (August 2005). "Control of locomotor cycle durations". Journal of Neurophysiology. 94 (2): 1057–65. CiteSeerX   10.1.1.215.8127 . doi:10.1152/jn.00991.2004. PMID   15800075.
  63. 1 2 3 Prochazka A, Yakovenko S (2007). "The neuromechanical tuning hypothesis". Computational Neuroscience: Theoretical Insights into Brain Function. Progress in Brain Research. Vol. 165. pp. 255–65. doi:10.1016/S0079-6123(06)65016-4. ISBN   9780444528230. PMID   17925251.{{cite book}}: |journal= ignored (help)
  64. 1 2 3 4 Danner SM, Wilshin SD, Shevtsova NA, Rybak IA (December 2016). "Central control of interlimb coordination and speed-dependent gait expression in quadrupeds". The Journal of Physiology. 594 (23): 6947–6967. doi:10.1113/JP272787. PMC   5134391 . PMID   27633893.
  65. Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, Kiehn O (August 2013). "Dual-mode operation of neuronal networks involved in left-right alternation". Nature. 500 (7460): 85–8. Bibcode:2013Natur.500...85T. doi:10.1038/nature12286. PMID   23812590. S2CID   4427401.
  66. Kiehn O (April 2016). "Decoding the organization of spinal circuits that control locomotion". Nature Reviews. Neuroscience. 17 (4): 224–38. doi:10.1038/nrn.2016.9. PMC   4844028 . PMID   26935168.
  67. 1 2 3 4 Danner SM, Shevtsova NA, Frigon A, Rybak IA (November 2017). "Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds". eLife. 6. doi: 10.7554/eLife.31050 . PMC   5726855 . PMID   29165245.
  68. Ausborn, Jessica; Shevtsova, Natalia A.; Danner, Simon M. (25 June 2021). "Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics". International Journal of Molecular Sciences. 22 (13): 6835. doi: 10.3390/ijms22136835 . PMC   8267724 . PMID   34202085.
  69. Bellardita C, Kiehn O (June 2015). "Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks". Current Biology. 25 (11): 1426–36. Bibcode:2015CBio...25.1426B. doi:10.1016/j.cub.2015.04.005. PMC   4469368 . PMID   25959968.
  70. Ruder L, Takeoka A, Arber S (December 2016). "Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability". Neuron. 92 (5): 1063–1078. doi: 10.1016/j.neuron.2016.10.032 . PMID   27866798.
  71. Ausborn J, Shevtsova NA, Caggiano V, Danner SM, Rybak IA (January 2019). "Computational modeling of brainstem circuits controlling locomotor frequency and gait". eLife. 8. doi: 10.7554/eLife.43587 . PMC   6355193 . PMID   30663578.
  72. Calancie B, Needham-Shropshire B, Jacobs P, Willer K, Zych G, Green BA (October 1994). "Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man". Brain. 117 (Pt 5): 1143–59. doi:10.1093/brain/117.5.1143. PMID   7953595.
  73. Radhakrishna M, Steuer I, Prince F, Roberts M, Mongeon D, Kia M, Dyck S, Matte G, Vaillancourt M, Guertin PA (December 2017). "Double-blind, placebo-controlled, randomized phase I/IIa study (safety and efficacy) with buspirone/levodopa/carbidopa (Spinalon) in subjects with complete AIS A or motor-complete AIS B spinal cord injury". Current Pharmaceutical Design. 23 (12): 1789–1804. doi:10.2174/1381612822666161227152200. PMID   28025945.
  74. Perret C, Cabelguen JM (1980). "Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles". Brain Research. 187 (2): 333–352. doi:10.1016/0006-8993(80)90207-3. PMID   7370734. S2CID   44913308.
  75. Shik ML, Severin FV, Orlovsky GN (1966). "Control of walking and running by means of electrical stimulation of the mid-brain". Biophysics. 11: 756–765.
  76. Goslow GE Jr.; Reinking RM; Stuart DG (1973). "The cat step cycle: hind limb joint angles and muscle lengths during unrestrained locomotion". Journal of Morphology. 141 (1): 1–41. doi:10.1002/jmor.1051410102. PMID   4727469. S2CID   42918929.
  77. Cruse H (1990). "What mechanisms coordinate leg movement in walking arthropods?" (PDF). Trends in Neurosciences. 13 (1): 15–21. doi:10.1016/0166-2236(90)90057-h. PMID   1688670. S2CID   16401306.
  78. Hemami H, Tomovic R, Ceranowicz AZ (1978). "Finite state control of planar bipeds with application to walking and sitting". Journal of Bioengineering. 2 (6): 477–494. PMID   753838.
  79. Prochazka A (1993). "Comparison of natural and artificial control of movement". IEEE Trans Rehab Eng. 1: 7–17. doi:10.1109/86.242403.
  80. Hiebert GW, Whelan PJ, Prochazka A, Pearson KG (1996). "Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle". Journal of Neurophysiology. 75 (3): 1126–1137. doi:10.1152/jn.1996.75.3.1126. PMID   8867123.
  81. Guertin P, Angel MJ, Perreault MC, McCrea DA (1995). "Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat". Journal of Physiology. 487 (1): 197–209. doi:10.1113/jphysiol.1995.sp020871. PMC   1156609 . PMID   7473249.
  82. 1 2 Prochazka A, Ellaway PH (2012). "Sensory systems in the control of movement". Comprehensive Physiology, Supplement 29: Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems. NY: John Wiley & Sons in conjunction with the American Physiological Society. pp. 2615–2627.
  83. Donelan JM, McVea DA, Pearson KG (2009). "Force regulation of ankle extensor muscle activity in freely walking cats". J Neurophysiol. 101 (1): 360–371. doi:10.1152/jn.90918.2008. PMID   19019974.
  84. Choi JT, Bastian AJ (August 2007). "Adaptation reveals independent control networks for human walking". Nat. Neurosci. 10 (8): 1055–62. doi:10.1038/nn1930. PMID   17603479. S2CID   1514215.
  85. Janczewski WA, Feldman JL (January 2006). "Distinct rhythm generators for inspiration and expiration in the juvenile rat". The Journal of Physiology. 570 (Pt 2): 407–20. doi:10.1113/jphysiol.2005.098848. PMC   1464316 . PMID   16293645.
  86. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (November 1991). "Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals". Science. 254 (5032): 726–9. Bibcode:1991Sci...254..726S. doi:10.1126/science.1683005. PMC   3209964 . PMID   1683005.
  87. Dick TE, Oku Y, Romaniuk JR, Cherniack NS (June 1993). "Interaction between central pattern generators for breathing and swallowing in the cat". The Journal of Physiology. 465: 715–30. doi:10.1113/jphysiol.1993.sp019702. PMC   1175455 . PMID   8229859.
  88. Grélot L, Barillot JC, Bianchi AL (1989). "Pharyngeal motoneurones: respiratory-related activity and responses to laryngeal afferents in the decerebrate cat". Experimental Brain Research. 78 (2): 336–44. doi:10.1007/bf00228905. PMID   2599043. S2CID   605299.
  89. Cramer NP, Li Y, Keller A (March 2007). "The whisking rhythm generator: a novel mammalian network for the generation of movement". Journal of Neurophysiology. 97 (3): 2148–58. doi:10.1152/jn.01187.2006. PMC   1821005 . PMID   17202239.
  90. Broch L, Morales RD, Sandoval AV, Hedrick MS (April 2002). "Regulation of the respiratory central pattern generator by chloride-dependent inhibition during development in the bullfrog (Rana catesbeiana)". The Journal of Experimental Biology. 205 (Pt 8): 1161–9. doi:10.1242/jeb.205.8.1161. PMID   11919275.
  91. Fan, Yi-Ping; Horn, Eric M.; Waldrop, Tony G. (2000-12-01). "Biophysical Characterization of Rat Caudal Hypothalamic Neurons: Calcium Channel Contribution to Excitability". Journal of Neurophysiology. 84 (6): 2896–2903. doi:10.1152/jn.2000.84.6.2896. ISSN   0022-3077. PMID   11110819. S2CID   1753434.
  92. Angstadt JD, Grassmann JL, Theriault KM, Levasseur SM (August 2005). "Mechanisms of postinhibitory rebound and its modulation by serotonin in excitatory swim motor neurons of the medicinal leech". Journal of Comparative Physiology A. 191 (8): 715–32. doi:10.1007/s00359-005-0628-6. PMID   15838650. S2CID   31433117.
  93. Perkel DH, Mulloney B (July 1974). "Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound". Science. 185 (4146): 181–3. Bibcode:1974Sci...185..181P. doi:10.1126/science.185.4146.181. PMID   4834220. S2CID   38173947.
  94. Gerasimov VD, Kostyuk PG, Maiskii VA (1966). "Reactions of giant neurons to break of hyperpolarizing current". Federation Proceedings. Translation Supplement; Selected Translations from Medical-related Science. 25 (3): 438–42. PMID   5222090.
  95. Mantziaris, Charalampos; Bockemühl, Till; Büschges, Ansgar (2020). "Central pattern generating networks in insect locomotion". Developmental Neurobiology. 80 (1–2): 16–30. doi: 10.1002/dneu.22738 . ISSN   1932-846X. PMID   32128970. S2CID   212407130.
  96. Rillich, Jan; Stevenson, Paul A.; Pflueger, Hans-Joachim (2013-05-09). "Flight and Walking in Locusts–Cholinergic Co-Activation, Temporal Coupling and Its Modulation by Biogenic Amines". PLOS ONE. 8 (5): e62899. Bibcode:2013PLoSO...862899R. doi: 10.1371/journal.pone.0062899 . ISSN   1932-6203. PMC   3650027 . PMID   23671643.
  97. Berkowitz, A.; Laurent, G. (1996-12-15). "Central generation of grooming motor patterns and interlimb coordination in locusts". The Journal of Neuroscience. 16 (24): 8079–8091. doi:10.1523/JNEUROSCI.16-24-08079.1996. ISSN   0270-6474. PMC   6579234 . PMID   8987833.
  98. Marder, E.; Bucher, D. (2001-11-27). "Central pattern generators and the control of rhythmic movements". Current Biology. 11 (23): R986–996. Bibcode:2001CBio...11.R986M. doi: 10.1016/s0960-9822(01)00581-4 . ISSN   0960-9822. PMID   11728329. S2CID   1294374.
  99. Ravbar, Primoz; Zhang, Neil; Simpson, Julie H. (2021-07-05). "Behavioral evidence for nested central pattern generator control of Drosophila grooming". eLife. 10: 2020.09.15.298679. bioRxiv   10.1101/2020.09.15.298679 . doi: 10.7554/eLife.71508 . PMC   8694699 . PMID   34936550. S2CID   221823475.
  100. Popescu IR, Frost WN (March 2002). "Highly dissimilar behaviors mediated by a multifunctional network in the marine mollusk Tritonia diomedea". J. Neurosci. 22 (5): 1985–93. doi: 10.1523/JNEUROSCI.22-05-01985.2002 . PMC   6758888 . PMID   11880529.
  101. Norris, Brian J.; Weaver, Adam L.; Wenning, Angela; García, Paul S.; Calabrese, Ronald L. (2007-11-01). "A Central Pattern Generator Producing Alternative Outputs: Phase Relations of Leech Heart Motor Neurons With Respect to Premotor Synaptic Input". Journal of Neurophysiology. 98 (5): 2983–2991. doi:10.1152/jn.00407.2007. ISSN   0022-3077. PMID   17728387.
  102. Ryu, HX; Kuo, AD (23 June 2021). "An optimality principle for locomotor central pattern generators". Scientific Reports. 11 (1): 13140. Bibcode:2021NatSR..1113140R. doi:10.1038/s41598-021-91714-1. PMC   8222298 . PMID   34162903.