Nobuo Suga | |
---|---|
Born | December 17, 1933 |
Nationality | Japanese |
Alma mater | Tokyo Metropolitan University |
Scientific career | |
Fields | Biology |
Institutions | Washington University in St Louis |
Doctoral advisor | Yatsuji Katsuki [1] |
Nobuo Suga (born December 17, 1933 [2] ) is a Japanese biologist noted for his research on the neurophysiology of hearing, and echolocation in bats. [3]
After earning a bachelor's degree in biology at Tokyo Metropolitan University in 1958, Nobuo studied for his doctoral thesis on the neurophysiology of hearing with Yatsuji Katsuki at the Tokyo Medical and Dental University. His early research attracted the attention of Vincent Wigglesworth of Cambridge University, a prominent insect researcher, and Donald Griffin of Harvard University, who studied bats. From there, his career took him to UCLA and UC San Diego School of Medicine, before finally arriving at Washington University in St. Louis. Suga became a U.S. citizen in 1993, prompted by an incident at St. Louis Lambert International Airport where a customs agent couldn't recognize Suga's picture on his green card, issued in 1966. [3]
Suga's work revealed much about the location and function of auditory system in the brain. Whilst at Washington University in St. Louis, he mapped the areas of the bat brain involved in processing Doppler shift (velocity) information, and in processing distance information for echolocation. His recent work has focused on the plasticity of the auditory system mediated by cortico-cortical interactions and corticofugal feedback.
Echolocation, also called bio sonar, is a biological sonar used by several animal species. Echolocating animals emit calls out to the environment and listen to the echoes of those calls that return from various objects near them. They use these echoes to locate and identify the objects. Echolocation is used for navigation, foraging, and hunting in various environments.
In physiology, tonotopy is the spatial arrangement of where sounds of different frequency are processed in the brain. Tones close to each other in terms of frequency are represented in topologically neighbouring regions in the brain. Tonotopic maps are a particular case of topographic organization, similar to retinotopy in the visual system.
Rodolfo Llinás Riascos is a Colombian and American neuroscientist. He is currently the Thomas and Suzanne Murphy Professor of Neuroscience and Chairman Emeritus of the Department of Physiology & Neuroscience at the NYU School of Medicine. Llinás has published over 800 scientific articles.
Jean-Pierre Changeux is a French neuroscientist known for his research in several fields of biology, from the structure and function of proteins, to the early development of the nervous system up to cognitive functions. Although being famous in biological sciences for the MWC model, the identification and purification of the nicotinic acetylcholine receptor and the theory of epigenesis by synapse selection are also notable scientific achievements. Changeux is known by the non-scientific public for his ideas regarding the connection between mind and physical brain. As put forth in his book, Conversations on Mind, Matter and Mathematics, Changeux strongly supports the view that the nervous system functions in a projective rather than reactive style and that interaction with the environment, rather than being instructive, results in the selection amongst a diversity of preexisting internal representations.
Neuroplasticity, also known as neural plasticity, or brain plasticity, is the ability of neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it previously functioned. These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping. Examples of neuroplasticity include circuit and network changes that result from learning a new ability, environmental influences, practice, and psychological stress.
Climbing fibers are the name given to a series of neuronal projections from the inferior olivary nucleus located in the medulla oblongata.
David J. Ostry is an engineer and neuroscientist whose research focuses on human motor control.
Lawrence C. Katz was an American neurobiologist. He was an investigator at the Howard Hughes Medical Institute. His lab was located in Duke University Medical Center, where he was the James B. Duke Professor of Neurobiology.
James A. Simmons is a pioneer in the field of biosonar. His research includes behavioral and neurophysiological studies of sound processing in the echolocating bat. From the time he began graduate research in the late 1960s to the present, he has been in the forefront of bat echolocation research. Simmons was honored as a fellow of the Acoustical Society of America (ASA) in 1996 and of the American Association for the Advancement of Science in 2000. He was awarded the ASA's second Silver Medal in Animal Bioacoustics in 2005. His current position is Professor in the Department of Neuroscience, Brown University.
Sensory maps are areas of the brain which respond to sensory stimulation, and are spatially organized according to some feature of the sensory stimulation. In some cases the sensory map is simply a topographic representation of a sensory surface such as the skin, cochlea, or retina. In other cases it represents other stimulus properties resulting from neuronal computation and is generally ordered in a manner that reflects the periphery. An example is the somatosensory map which is a projection of the skin's surface in the brain that arranges the processing of tactile sensation. This type of somatotopic map is the most common, possibly because it allows for physically neighboring areas of the brain to react to physically similar stimuli in the periphery or because it allows for greater motor control.
Feature detection is a process by which the nervous system sorts or filters complex natural stimuli in order to extract behaviorally relevant cues that have a high probability of being associated with important objects or organisms in their environment, as opposed to irrelevant background or noise.
Sensory maps and brain development is a concept in neuroethology that links the development of the brain over an animal’s lifetime with the fact that there is spatial organization and pattern to an animal’s sensory processing. Sensory maps are the representations of sense organs as organized maps in the brain, and it is the fundamental organization of processing. Sensory maps are not always close to an exact topographic projection of the senses. The fact that the brain is organized into sensory maps has wide implications for processing, such as that lateral inhibition and coding for space are byproducts of mapping. The developmental process of an organism guides sensory map formation; the details are yet unknown. The development of sensory maps requires learning, long term potentiation, experience-dependent plasticity, and innate characteristics. There is significant evidence for experience-dependent development and maintenance of sensory maps, and there is growing evidence on the molecular basis, synaptic basis and computational basis of experience-dependent development.
When an echolocating bat approaches a target, its outgoing sounds return as echoes, which are Doppler shifted upward in frequency. In certain species of bats, which produce constant frequency (CF) echolocation calls, the bats compensate for the Doppler shift by changing their call frequency as they change speed towards a target. This keeps the returning echo in the same frequency range of the normal echolocation call. This dynamic frequency modulation is called the Doppler shift compensation (DSC), and was discovered by Hans Schnitzler in 1968.
Raz Yirmiya is an Israeli behavioral neuroscientist and director of the Laboratory for Psychoneuroimmunology at the Hebrew University of Jerusalem in Israel. He is best known for providing the first experimental evidence for the role of immune system activation in depression, for discovering that disturbances in brain microglia cells underlie some forms of depression, and for elucidating the involvement of inflammatory cytokines in regulation of cognitive and emotional processes.
Rishikesh Narayanan is an Indian neuroscientist, computer engineer and a professor at the Molecular Biophysics Unit (MBU) of the Indian Institute of Science. He is the principal investigator at the Cellular Neurophysiology Laboratory of MBU where his team is engaged in researches on experimental and theoretical aspects of information processing in single neurons and their networks. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 2016, for his contributions to biological sciences.
Anna Wang Roe is an American neuroscientist, the director of the Interdisciplinary Institute of Neuroscience and Technology (ZIINT), and full-time professor at the Zhejiang University, Hangzhou, China. She is known for her studies on the functional organization and connectivity of cerebral cortex and for bringing interdisciplinary approaches to address questions in systems neuroscience.
Heidi Johansen-Berg is a Professor of Cognitive Neuroscience and Director of the Wellcome Centre for Integrative Neuroimaging at the University of Oxford. She studies brain plasticity in the context of stroke rehabilitation and aging.
Ilana B. Witten is an American neuroscientist and professor of psychology and neuroscience at Princeton University. Witten studies the mesolimbic pathway, with a focus on the striatal neural circuit mechanisms driving reward learning and decision making.
Jessica Cardin is an American neuroscientist who is an associate professor of neuroscience at Yale University School of Medicine. Cardin's lab studies local circuits within the primary visual cortex to understand how cellular and synaptic interactions flexibly adapt to different behavioral states and contexts to give rise to visual perceptions and drive motivated behaviors. Cardin's lab applies their knowledge of adaptive cortical circuit regulation to probe how circuit dysfunction manifests in disease models.
Beat H. Gähwiler, is a Swiss emeritus professor in neuroscience at the Brain Research Institute of the University of Zurich, Switzerland.