Hosoya index

Last updated
The complete graph K4 has the ten matchings shown, so its Hosoya index is ten, the maximum for any four-vertex graph. K4 matchings.svg
The complete graph K4 has the ten matchings shown, so its Hosoya index is ten, the maximum for any four-vertex graph.

The Hosoya index, also known as the Z index, of a graph is the total number of matchings in it. The Hosoya index is always at least one, because the empty set of edges is counted as a matching for this purpose. Equivalently, the Hosoya index is the number of non-empty matchings plus one. The index is named after Haruo Hosoya. It is used as a topological index in chemical graph theory.

Contents

For a graph with n vertices, the Hosoya index is upper bounded by

The upper bound is attained if the graph is fully connected. [1]

History

This graph invariant was introduced by Haruo Hosoya in 1971. [2] It is often used in chemoinformatics for investigations of organic compounds. [3] [4]

In his article, "The Topological Index Z Before and After 1971," on the history of the notion and the associated inside stories, Hosoya writes that he introduced the Z index to report a good correlation of the boiling points of alkane isomers and their Z indices, basing on his unpublished 1957 work carried out while he was an undergraduate student at the University of Tokyo. [3]

Example

A linear alkane, for the purposes of the Hosoya index, may be represented as a path graph without any branching. A path with one vertex and no edges (corresponding to the methane molecule) has one (empty) matching, so its Hosoya index is one; a path with one edge (ethane) has two matchings (one with zero edges and one with one edges), so its Hosoya index is two. Propane (a length-two path) has three matchings: either of its edges, or the empty matching. n-butane (a length-three path) has five matchings, distinguishing it from isobutane which has four. More generally, a matching in a path with k edges either forms a matching in the first k  1 edges, or it forms a matching in the first k  2 edges together with the final edge of the path. Thus, the Hosoya indices of linear alkanes obey the recurrence governing the Fibonacci numbers. The structure of the matchings in these graphs may be visualized using a Fibonacci cube.

The largest possible value of the Hosoya index, on a graph with n vertices, is given by the complete graph, and the Hosoya indices for the complete graphs are the telephone numbers

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, ... (sequence A000085 in the OEIS ). [5]

Algorithms

The Hosoya index is #P-complete to compute, even for planar graphs. [6] However, it may be calculated by evaluating the matching polynomial mG at the argument 1. [7] Based on this evaluation, the calculation of the Hosoya index is fixed-parameter tractable for graphs of bounded treewidth [8] and polynomial (with an exponent that depends linearly on the width) for graphs of bounded clique-width. [9] The Hosoya index can be efficiently approximated using an FPRAS. [10]

Notes

  1. Tichy, Robert F.; Wagner, Stephan (2005), "Extremal problems for topological indices in combinatorial chemistry" (PDF), Journal of Computational Biology , 12 (7): 1004–1013, CiteSeerX   10.1.1.379.8693 , doi:10.1089/cmb.2005.12.1004, PMID   16201918 .
  2. Hosoya, Haruo (1971), "Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons", Bulletin of the Chemical Society of Japan, 44 (9): 2332–2339, doi: 10.1246/bcsj.44.2332 .
  3. 1 2 Hosoya, Haruo (2002), "The topological index Z before and after 1971", Internet Electronic Journal of Molecular Design, 1 (9): 428–442.
  4. Internet Electronic Journal of Molecular Design, special issues dedicated to Professor Haruo Hosoya on the occasion of the 65th birthday: Volume 1 (2002), Number 9 — Volume 2 (2003), Number 6.
  5. Tichy, Robert F.; Wagner, Stephan (2005), "Extremal problems for topological indices in combinatorial chemistry" (PDF), Journal of Computational Biology , 12 (7): 1004–1013, doi:10.1089/cmb.2005.12.1004, PMID   16201918 .
  6. Jerrum, Mark (1987), "Two-dimensional monomer-dimer systems are computationally intractable", Journal of Statistical Physics, 48 (1): 121–134, Bibcode:1987JSP....48..121J, doi:10.1007/BF01010403, S2CID   189854401 .
  7. Gutman, Ivan (1991), "Polynomials in graph theory", in Bonchev, D.; Rouvray, D. H. (eds.), Chemical Graph Theory: Introduction and Fundamentals, Mathematical Chemistry, vol. 1, Taylor & Francis, pp. 133–176, ISBN   978-0-85626-454-2 .
  8. Courcelle, B.; Makowsky, J. A.; Rotics, U. (2001), "On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic" (PDF), Discrete Applied Mathematics, 108 (1–2): 23–52, doi:10.1016/S0166-218X(00)00221-3 .
  9. Makowsky, J. A.; Rotics, Udi; Averbouch, Ilya; Godlin, Benny (2006), "Computing graph polynomials on graphs of bounded clique-width", Proc. 32nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG '06) (PDF), Lecture Notes in Computer Science, vol. 4271, Springer-Verlag, pp. 191–204, doi:10.1007/11917496_18, ISBN   978-3-540-48381-6 .
  10. Jerrum, Mark; Sinclair, Alistair (1996). "Chapter 12: The Markov chain Monte Carlo method: an approach to approximate counting and integration". Approximation Algorithms for NP-hard problems (PDF). PWS Publishing. pp. 482–520.

Related Research Articles

The #P-complete problems form a complexity class in computational complexity theory. The problems in this complexity class are defined by having the following two properties:

Complete graph Graph in which every two vertices are adjacent

In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. Finding a matching in a bipartite graph can be treated as a network flow problem.

Edge coloring Problem of coloring a graphs edges such that meeting edges do not match

In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

In computer science, a topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in the ordering. For instance, the vertices of the graph may represent tasks to be performed, and the edges may represent constraints that one task must be performed before another; in this application, a topological ordering is just a valid sequence for the tasks. Precisely, a topological sort is a graph traversal in which each node v is visited only after all its dependencies are visited. A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at least one topological ordering, and algorithms are known for constructing a topological ordering of any DAG in linear time. Topological sorting has many applications especially in ranking problems such as feedback arc set. Topological sorting is possible even when the DAG has disconnected components.

Chromatic polynomial Function in algebraic graph theory

The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics. It counts the number of graph colorings as a function of the number of colors and was originally defined by George David Birkhoff to study the four color problem. It was generalised to the Tutte polynomial by Hassler Whitney and W. T. Tutte, linking it to the Potts model of statistical physics.

Graph property Property of graphs that depends only on abstract structure

In graph theory, a graph property or graph invariant is a property of graphs that depends only on the abstract structure, not on graph representations such as particular labellings or drawings of the graph.

Tutte polynomial Algebraic encoding of graph connectivity

The Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph and contains information about how the graph is connected. It is denoted by .

In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure.

Haruo Hosoya is a Japanese chemist and emeritus professor of Ochanomizu University, Tokyo, Japan. He is the namesake of the Hosoya index used in discrete mathematics and computational chemistry.

In chemical graph theory, the Wiener index introduced by Harry Wiener, is a topological index of a molecule, defined as the sum of the lengths of the shortest paths between all pairs of vertices in the chemical graph representing the non-hydrogen atoms in the molecule.

In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph. A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or by the sum of the weights of its edges. In contrast to the shortest path problem, which can be solved in polynomial time in graphs without negative-weight cycles, the longest path problem is NP-hard and the decision version of the problem, which asks whether a path exists of at least some given length, is NP-complete. This means that the decision problem cannot be solved in polynomial time for arbitrary graphs unless P = NP. Stronger hardness results are also known showing that it is difficult to approximate. However, it has a linear time solution for directed acyclic graphs, which has important applications in finding the critical path in scheduling problems.

Ladder graph Planar, undirected graph with 2n vertices and 3n-2 edges

In the mathematical field of graph theory, the ladder graphLn is a planar, undirected graph with 2n vertices and 3n – 2 edges.

Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.

In the mathematical fields of graph theory and combinatorics, a matching polynomial is a generating function of the numbers of matchings of various sizes in a graph. It is one of several graph polynomials studied in algebraic graph theory.

The FKT algorithm, named after Fisher, Kasteleyn, and Temperley, counts the number of perfect matchings in a planar graph in polynomial time. This same task is #P-complete for general graphs. For matchings that are not required to be perfect, counting them remains #P-complete even for planar graphs. The key idea of the FKT algorithm is to convert the problem into a Pfaffian computation of a skew-symmetric matrix derived from a planar embedding of the graph. The Pfaffian of this matrix is then computed efficiently using standard determinant algorithms.

Telephone number (mathematics) Number of ways to connect n phone lines

In mathematics, the telephone numbers or the involution numbers form a sequence of integers that count the ways n telephone lines can be connected to each other, where each line can be connected to at most one other line. These numbers also describe the number of matchings of a complete graph on n vertices, the number of permutations on n elements that are involutions, the sum of absolute values of coefficients of the Hermite polynomials, the number of standard Young tableaux with n cells, and the sum of the degrees of the irreducible representations of the symmetric group. Involution numbers were first studied in 1800 by Heinrich August Rothe, who gave a recurrence equation by which they may be calculated, giving the values

In graph theory, an induced matching or strong matching is a subset of the edges of an undirected graph that do not share any vertices and includes every edge connecting any two vertices in the subset.

References