Hydrated silica

Last updated
Hydrated silica is a primary ingredient in modern toothpastes, serving as a high performance abrasive during cleaning. Toothbrush, Toothpaste, Dental Care (571741) (cropped).jpg
Hydrated silica is a primary ingredient in modern toothpastes, serving as a high performance abrasive during cleaning.

Hydrated silica is a form of silicon dioxide, which has a variable amount of water in the formula. When dissolved in water, it is usually known as silicic acid. It is found in nature as opal [2] (which has been mined as a gemstone for centuries), and in the cell walls of diatoms. It is also synthetically manufactured for use in toothpaste as an abrasive to assist in cleaning. Hydrated silica can be dehydrated to produce silica gel [ citation needed ], which is used as a desiccant. It is also used in various paints and varnishes and in the production of beer. [3]

Contents

Use in toothpaste

Diatomaceous earth, originally mined as "tooth powder" is a naturally occurring hydrated silica. As a fine gel abrasive, frequently combined with softer calcium carbonate (from chalk) it helps to remove plaque. Milled to a slightly larger size, the grains are more aggressive and are used in tooth bleaching formulations. [4] Hydrated silica is a useful abrasive in toothpastes because it does not chemically interact with other active ingredients, especially sodium fluoride. [5]

Nature

Hydrated silicas can form in nature through biotic processes primarily involving benthic microorganism activity in the oceans. [6] However, there are several abiotic processes that form hydrated silicas, such as precipitating out of solution, forming a diagenetic alteration product, or replacing pre-existing minerals in sedimentary rocks. [6]

In its pure form, as manufactured for toothpaste, it is an odorless, tasteless, white, gelatinous substance, which is chemically inert. One of the primary industrial methods to acquire hydrated silica is through a sol-gel process. [7]

Hydrated silicas can be categorized into three main categories based on differences in crystallinity: [6]

  1. Hydrated silicate glass (Lowest crystallinity)
  2. Opal
  3. Microcrystalline quartz (Highest crystallinity)

One of the most common ways to detect and identify hydrated silicas in laboratory is through near infrared and thermal infrared spectroscopy. [6]

Chemical formula

Chemical Formula: SiO2 · nH2O

1 SiO2 + 1 H2O → H2SiO3
1 SiO2 + 2 H2O → H4SiO4 [also known as Si(OH)4]
2 SiO2 + 1 H2O → H2Si2O5
2 SiO2 + 3 H2O → H6Si2O7
3 SiO2 + 2 H2O → H4Si3O8
3 SiO2 + 4 H2O → H8Si3O10
4 SiO2 + 1 H2O → H2Si4O9

Hydrated silicas exhibit a trend of decreasing bonded water molecules as the crystallinity of the silica molecule increases, with microcrystalline quartz's typically containing the highest water content. [6]

Flame retardant

Hydrated silica compounds, such as hydrated silica aluminate (HSA), can be combined with traditional flame retardants, such as magnesium hydroxide and aluminium hydroxide, to increase their effectivity. [8] A hydrated silica compound's effectiveness as a flame retardant is dependent upon the presence of chemically bonded transition metals, commonly iron and titanium [9]

Safety

Hydrated silica is listed by the US Food and Drug Administration as "Generally Recognized as Safe" [10]

Related Research Articles

A mineraloid is a naturally occurring mineral-like substance that does not demonstrate crystallinity. Mineraloids possess chemical compositions that vary beyond the generally accepted ranges for specific minerals. For example, obsidian is an amorphous glass and not a crystal. Jet is derived from decaying wood under extreme pressure. Opal is another mineraloid because of its non-crystalline nature. Pearl is considered a mineraloid because the included calcite and/or aragonite crystals are bonded by an organic material, and there is no definite proportion of the components.

<span class="mw-page-title-main">Silicon dioxide</span> Oxide of silicon

Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula SiO2, commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is abundant as it comprises several minerals and as a synthetic products. All forms are white or colorless, although impure samples can be colored.

<span class="mw-page-title-main">Aluminium oxide</span> Chemical compound with formula Al2O3

Aluminium oxide (or Aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire. Al2O3 is significant in its use to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.

<span class="mw-page-title-main">Calcium oxide</span> Chemical compound of calcium

Calcium oxide, commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term lime connotes calcium-containing inorganic compounds, in which carbonates, oxides, and hydroxides of calcium, silicon, magnesium, aluminium, and iron predominate. By contrast, quicklime specifically applies to the single compound calcium oxide. Calcium oxide that survives processing without reacting in building products, such as cement, is called free lime.

The Bayer process is the principal industrial means of refining bauxite to produce alumina (aluminium oxide) and was developed by Carl Josef Bayer. Bauxite, the most important ore of aluminium, contains only 30–60% aluminium oxide (Al2O3), the rest being a mixture of silica, various iron oxides, and titanium dioxide. The aluminium oxide must be further purified before it can be refined into aluminium metal.

Cement chemist notation (CCN) was developed to simplify the formulas cement chemists use on a daily basis. It is a shorthand way of writing the chemical formula of oxides of calcium, silicon, and various metals.

<span class="mw-page-title-main">Pozzolana</span> Natural siliceous or siliceous-aluminous material

Pozzolana or pozzuolana, also known as pozzolanic ash, is a natural siliceous or siliceous-aluminous material which reacts with calcium hydroxide in the presence of water at room temperature. In this reaction insoluble calcium silicate hydrate and calcium aluminate hydrate compounds are formed possessing cementitious properties. The designation pozzolana is derived from one of the primary deposits of volcanic ash used by the Romans in Italy, at Pozzuoli. The modern definition of pozzolana encompasses any volcanic material, predominantly composed of fine volcanic glass, that is used as a pozzolan. Note the difference with the term pozzolan, which exerts no bearing on the specific origin of the material, as opposed to pozzolana, which can only be used for pozzolans of volcanic origin, primarily composed of volcanic glass.

In materials science, the sol–gel process is a method for producing solid materials from small molecules. The method is used for the fabrication of metal oxides, especially the oxides of silicon (Si) and titanium (Ti). The process involves conversion of monomers into a colloidal solution (sol) that acts as the precursor for an integrated network of either discrete particles or network polymers. Typical precursors are metal alkoxides. Sol-gel process is used to produce ceramic nanoparticles.

<span class="mw-page-title-main">Sodium aluminate</span> Chemical compound

Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications. Pure sodium aluminate (anhydrous) is a white crystalline solid having a formula variously given as NaAlO2, NaAl(OH)4 (hydrated), Na2O·Al2O3, or Na2Al2O4. Commercial sodium aluminate is available as a solution or a solid.
Other related compounds, sometimes called sodium aluminate, prepared by reaction of Na2O and Al2O3 are Na5AlO4 which contains discrete AlO45− anions, Na7Al3O8 and Na17Al5O16 which contain complex polymeric anions, and NaAl11O17, once mistakenly believed to be β-alumina, a phase of aluminium oxide.

<span class="mw-page-title-main">Hexafluorosilicic acid</span> Octahedric silicon compound

Hexafluorosilicic acid is an inorganic compound with the chemical formula H
2
SiF
6
. Aqueous solutions of hexafluorosilicic acid consist of salts of the cation and hexafluorosilicate anion. These salts and their aqueous solutions are colorless.

<span class="mw-page-title-main">Calcium aluminate cements</span> Rapidly setting hydraulic cements

Calcium aluminate cements are cements consisting predominantly of hydraulic calcium aluminates. Alternative names are "aluminous cement", "high-alumina cement", and "Ciment fondu" in French. They are used in a number of small-scale, specialized applications.

An AFm phase is an "alumina, ferric oxide, monosubstituted" phase, or aluminate ferrite monosubstituted, or Al2O3, Fe2O3 mono, in cement chemist notation (CCN). AFm phases are important hydration products in the hydration of Portland cements and hydraulic cements.

<span class="mw-page-title-main">Alkali–silica reaction</span> Chemical reaction damaging concrete

The alkali–silica reaction (ASR), also commonly known as concrete cancer, is a deleterious swelling reaction that occurs over time in concrete between the highly alkaline cement paste and the reactive amorphous silica found in many common aggregates, given sufficient moisture.

<span class="mw-page-title-main">Moganite</span> Silica mineral, rare monoclinic polymorph of quartz

Moganite is an oxide mineral with the chemical formula SiO2 (silicon dioxide) that was discovered in 1976. It was initially described as a new form of silica from specimens found in the Barranco de Medio Almud, in the municipality of Mogán on the island of Gran Canaria, in the Canary Islands (Spain), receiving in a later work the name derived from this locality. In 1994 the International Mineralogical Association decided to disapprove it as a valid mineral, since it was considered indistinguishable from quartz. Subsequent studies allowed the IMA to rectify it in 1999, accepting it as a mineral species. It has the same chemical composition as quartz, but a different crystal structure.

Calcium silicate hydrates are the main products of the hydration of Portland cement and are primarily responsible for the strength of cement-based materials. They are the main binding phase in most concrete. Only well defined and rare natural crystalline minerals can be abbreviated as CSH while extremely variable and poorly ordered phases without well defined stoichiometry, as it is commonly observed in hardened cement paste (HCP), are denoted C-S-H.

<span class="mw-page-title-main">ZSM-5</span>

ZSM-5, Zeolite Socony Mobil–5 (framework type MFI from ZSM-5 (five)), is an aluminosilicate zeolite belonging to the pentasil family of zeolites. Its chemical formula is NanAlnSi96–nO192·16H2O (0<n<27). Patented by Mobil Oil Company in 1975, it is widely used in the petroleum industry as a heterogeneous catalyst for hydrocarbon isomerization reactions.

Fire-safe polymers are polymers that are resistant to degradation at high temperatures. There is need for fire-resistant polymers in the construction of small, enclosed spaces such as skyscrapers, boats, and airplane cabins. In these tight spaces, ability to escape in the event of a fire is compromised, increasing fire risk. In fact, some studies report that about 20% of victims of airplane crashes are killed not by the crash itself but by ensuing fires. Fire-safe polymers also find application as adhesives in aerospace materials, insulation for electronics, and in military materials such as canvas tenting.

<span class="mw-page-title-main">Concrete degradation</span> Damage to concrete affecting its mechanical strength and its durability

Concrete degradation may have many different causes. Concrete is mostly damaged by the corrosion of reinforcement bars due to the carbonatation of hardened cement paste or chloride attack under wet conditions. Chemical damages are caused by the formation of expansive products produced by various chemical reactions, by aggressive chemical species present in groundwater and seawater, or by microorganisms. Other damaging processes can also involve calcium leaching by water infiltration and different physical phenomena initiating cracks formation and propagation. All these detrimental processes and damaging agents adversely affects the concrete mechanical strength and its durability.

The pozzolanic activity is a measure for the degree of reaction over time or the reaction rate between a pozzolan and Ca2+ or calcium hydroxide (Ca(OH)2) in the presence of water. The rate of the pozzolanic reaction is dependent on the intrinsic characteristics of the pozzolan such as the specific surface area, the chemical composition and the active phase content.

In chemistry, a silicic acid is any chemical compound containing the element silicon attached to oxide and hydroxyl groups, with the general formula [H2xSiOx+2]n or, equivalently, [SiOx(OH)4−2x]n. Orthosilicic acid is a representative example. Silicic acids are rarely observed in isolation, but are thought to exist in aqueous solutions, including seawater, and play a role in biomineralization. They are typically colorless weak acids that are sparingly soluble in water. Like the silicate anions, which are their better known conjugate bases, silicic acids are proposed to be oligomeric or polymeric. No simple silicic acid has ever been identified, since these species are primarily of theoretical interest.

References

  1. Wiilknitz, P. (November 1997). "Cleaning Power and Abrasivity of European Toothpastes". Advances in Dental Research. 11 (4): 576–579. doi:10.1177/08959374970110042701. ISSN   0895-9374. PMID   9470519. S2CID   72981780.
  2. "Amethyst Galleries: Opal".
  3. "Hydrated silica gel for stabilization treatment of beer".
  4. https://web.archive.org/web/20071126082443/http://www.tomsofmaine.com/toms/ifs/hydrated_silica.asp
  5. Hara, Anderson T.; Turssi, Cecilia P. (2017-11-01). "Baking soda as an abrasive in toothpastes: Mechanism of action and safety and effectiveness considerations". The Journal of the American Dental Association. 148 (11): S27–S33. doi:10.1016/j.adaj.2017.09.007. ISSN   0002-8177. PMID   29056187.
  6. 1 2 3 4 5 Smith, Matthew R.; Bandfield, Joshua L.; Cloutis, Edward A.; Rice, Melissa S. (2013-04-01). "Hydrated silica on Mars: Combined analysis with near-infrared and thermal-infrared spectroscopy". Icarus. 223 (2): 633–648. doi:10.1016/j.icarus.2013.01.024. ISSN   0019-1035.
  7. "Hydrated Silica - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2023-02-04.
  8. Zhang, Sheng; Tang, Wufei; Guo, Jia; Jin, Xiaodong; Li, Hongfei; Gu, Xiaoyu; Sun, Jun (2018-08-01). "Improvement of flame retardancy and thermal stability of polypropylene by P-type hydrated silica aluminate containing lanthanum". Polymer Degradation and Stability. 154: 276–284. doi:10.1016/j.polymdegradstab.2018.06.014. ISSN   0141-3910. S2CID   139985716.
  9. Fire retardancy of polymeric materials. Arthur F. Grand, Charles A. Wilkie. New York: Marcel Dekker. 2000. ISBN   0-8247-8879-6. OCLC   43569399.{{cite book}}: CS1 maint: others (link)
  10. https://web.archive.org/web/20071126082443/http://www.tomsofmaine.com/toms/ifs/hydrated_silica.asp

Toothpaste: Chemistry: [ unreliable source? ] Opal: Paint/Varnish: Beer: