Hydrolyzed protein

Last updated

Hydrolyzed protein is a solution derived from the hydrolysis of a protein into its component amino acids and peptides. While many means of achieving this exist, most common is prolonged heating with hydrochloric acid, [1] sometimes with an enzyme such as pancreatic protease to simulate the naturally occurring hydrolytic process.

Contents

Uses

Protein hydrolysis is a useful route to the isolation of individual amino acids. [1] [2] Examples include cystine from hydrolysis of hair, [3] tryptophane from casein, [4] histidine from red blood cells, [5] and arginine from gelatin. [6]

Common hydrolyzed products used in food are hydrolyzed vegetable protein and yeast extract, which are used as flavor enhancers because the hydrolysis of the protein produces free glutamic acid. Some hydrolyzed beef protein powders are used for specialized diets. [7]

Protein hydrolysis can be used to modify the allergenic properties of infant formula. Reducing the size of cow milk proteins in the formula makes it more suitable for consumption by babies suffering from milk protein intolerance. The US FDA has approved a label for this usage of partially-hydrolyzed proteins in 2017, [8] but a meta-analysis published the same year shows insufficient evidence for this use. [9]

Hydrolyzed protein is also used in certain specially formulated hypoallergenic pet foods, notably dog foods for dogs and puppies that suffer from allergies caused by certain protein types in standard commercial dog food brands. The protein contents of the foods are split into peptides which reduces the likelihood for an animal's immune system recognizing an allergic threat. Hydrolyzed protein diets for cats are often recommended for felines with food allergies and certain types of digestive issues. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Amide</span> Organic compounds of the form RC(=O)NR′R″

In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula R−C(=O)−NR′R″, where R, R', and R″ represent any group, typically organyl groups or hydrogen atoms. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid with the hydroxyl group replaced by an amine group ; or, equivalently, an acyl (alkanoyl) group joined to an amine group.

<span class="mw-page-title-main">Trypsin</span> Family of digestive enzymes

Trypsin is an enzyme in the first section of the small intestine that starts the digestion of protein molecules by cutting long chains of amino acids into smaller pieces. It is a serine protease from the PA clan superfamily, found in the digestive system of many vertebrates, where it hydrolyzes proteins. Trypsin is formed in the small intestine when its proenzyme form, the trypsinogen produced by the pancreas, is activated. Trypsin cuts peptide chains mainly at the carboxyl side of the amino acids lysine or arginine. It is used for numerous biotechnological processes. The process is commonly referred to as trypsinogen proteolysis or trypsinization, and proteins that have been digested/treated with trypsin are said to have been trypsinized. Trypsin was discovered in 1876 by Wilhelm Kühne and was named from the Ancient Greek word for rubbing since it was first isolated by rubbing the pancreas with glycerin.

<span class="mw-page-title-main">Casein</span> Family of proteins found in milk

Casein is a family of related phosphoproteins that are commonly found in mammalian milk, comprising about 80% of the proteins in cow's milk and between 20% and 60% of the proteins in human milk. Sheep and Cow milk have a higher casein content than other types of milk with human milk having a particularly low casein content.

An essential amino acid, or indispensable amino acid, is an amino acid that cannot be synthesized from scratch by the organism fast enough to supply its demand, and must therefore come from the diet. Of the 21 amino acids common to all life forms, the nine amino acids humans cannot synthesize are valine, isoleucine, leucine, methionine, phenylalanine, tryptophan, threonine, histidine, and lysine.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

<span class="mw-page-title-main">Dipeptide</span> Shortest peptide molecule, containing two amino acids joined by a single peptide bond

A dipeptide is an organic compound derived from two amino acids. The constituent amino acids can be the same or different. When different, two isomers of the dipeptide are possible, depending on the sequence. Several dipeptides are physiologically important, and some are both physiologically and commercially significant. A well known dipeptide is aspartame, an artificial sweetener.

<span class="mw-page-title-main">Cellobiose</span> Chemical compound

Cellobiose is a disaccharide with the formula (C6H7(OH)4O)2O. It is classified as a reducing sugar. In terms of its chemical structure, it is derived from the condensation of a pair of β-glucose molecules forming a β(1→4) bond. It can be hydrolyzed to glucose enzymatically or with acid. Cellobiose has eight free alcohol (OH) groups, one acetal linkage and one hemiacetal linkage, which give rise to strong inter- and intramolecular hydrogen bonds. It is a white solid.

The Bouveault–Blanc reduction is a chemical reaction in which an ester is reduced to primary alcohols using absolute ethanol and sodium metal. It was first reported by Louis Bouveault and Gustave Louis Blanc in 1903. Bouveault and Blanc demonstrated the reduction of ethyl oleate and n-butyl oleate to oleyl alcohol. Modified versions of which were subsequently refined and published in Organic Syntheses.

Hydrolyzed vegetable protein (HVP) products are foodstuffs obtained by protein hydrolysis and are used as ingredients to create a bouillon (broth) taste without the vegetables, bones, simmering, or other standard elements of creating bouillon from scratch.

Geminal halide hydrolysis is an organic reaction. The reactants are geminal dihalides with a water molecule or a hydroxide ion. The reaction yields ketones from secondary halides or aldehydes from primary halides.

<span class="mw-page-title-main">Cyanamide</span> Chemical compound featuring a nitrile group attached to an amino group

Cyanamide is an organic compound with the formula CN2H2. This white solid is widely used in agriculture and the production of pharmaceuticals and other organic compounds. It is also used as an alcohol-deterrent drug. The molecule features a nitrile group attached to an amino group. Derivatives of this compound are also referred to as cyanamides, the most common being calcium cyanamide (CaCN2).

<span class="mw-page-title-main">2-Chloropropionic acid</span> Chemical compound

2-Chloropropionic acid (2-chloropropanoic acid) is the chemical compound with the formula CH3CHClCO2H. This colorless liquid is the simplest chiral chlorocarboxylic acid, and it is noteworthy for being readily available as a single enantiomer. The conjugate base of 2-chloropropionic acid (CH3CHClCO2), as well as its salts and esters, are known as 2-chloropropionates or 2-chloropropanoates.

The Schotten–Baumann reaction is a method to synthesize amides from amines and acid chlorides:

<span class="mw-page-title-main">Benzyl cyanide</span> Chemical compound

Benzyl cyanide (abbreviated BnCN) is an organic compound with the chemical formula C6H5CH2CN. This colorless oily aromatic liquid is an important precursor to numerous compounds in organic chemistry.

<span class="mw-page-title-main">Cyclohexenone</span> Chemical compound

Cyclohexenone is an organic compound which is a versatile intermediate used in the synthesis of a variety of chemical products such as pharmaceuticals and fragrances. It is colorless liquid, but commercial samples are often yellow.

1-Naphthol, or α-naphthol, is a fluorescent organic compound with the formula C10H7OH. It is a white solid. It is an isomer of 2-naphthol differing by the location of the hydroxyl group on the naphthalene ring. The naphthols are naphthalene homologues of phenol, with the hydroxyl group being more reactive than in the phenols. Both isomers are soluble in simple alcohols, ethers, and chloroform. They are precursors to a variety of useful compounds. Naphthols are used as biomarkers for livestock and humans exposed to polycyclic aromatic hydrocarbons.

<span class="mw-page-title-main">Sodium chloroacetate</span> Chemical compound

Sodium chloroacetate is the organic compound with the formula CH2ClCO2Na. A white, water-soluble solid, it is the sodium salt of chloroacetic acid. Many of its uses are similar to those of the parent acid. It is prepared by treating chloroacetic acid with sodium carbonate.

Fish protein powder (FPP) describes a food grade powder product designated primarily for human consumption applications. It differs significantly from fish meal products which are designated for animal feed applications. Fish protein powders have various sanitary processing, purity and functional characteristics which establish them as human food ingredients. Production plants registered for the USA market are located in Peru and France.

<span class="mw-page-title-main">Hypoallergenic dog food</span>

Hypoallergenic dog food diets are created for dogs that experience food-related allergies causing adverse effects to their physical health.Super Hypoallergenic is enzymatic hydrolyzed hypoallergenic ostrich protein. The molecules that usually become allergens are intact proteins or glycoproteins. Hypoallergenic dog food diets offer a variety of protein sources that are unique by using proteins that are not recognized by the dog's antibodies as being antigens, minimizing allergic reactions for example Ostrich meat, bones and sinews. Adding novel protein sources, such as novel meats that a dog or its ancestors have never been exposed to is one method. Novel proteins can also be created by chemically modifying well known protein sources using hydrolysis techniques, rendering proteins unrecognizable by the gastrointestinal tract. Not all antigens are specific to proteins, however, and it is possible for anything that the body ingests to become an allergen. Providing diets with a limited amount of ingredients can be used for diagnostic purposes, as well as for dogs who are allergic to the common ingredients that are used in pet food. Certain nutrients are commonly incorporated into hypoallergenic dog food to help alleviate the symptoms of an allergic reaction. These ingredients include omega-3 fatty acids, Vitamins A and E, zinc, novel carbohydrates, and fiber.

<span class="mw-page-title-main">Diethyl acetamidomalonate</span> Chemical compound

Diethyl acetamidomalonate (DEAM) is a derivative of malonic acid diethyl ester. Formally, it is derived through the acetylation of ester from the unstable aminomalonic acid. DEAM serves as a starting material for racemates including both, natural and unnatural α-amino acids or hydroxycarboxylic acids. It is also usable as a precursor in pharmaceutical formulations, particularly in the cases of active ingredients like fingolimod, which is used to treat multiple sclerosis.

References

  1. 1 2 Drauz, Karlheinz; Grayson, Ian; Kleemann, Axel; Krimmer, Hans-Peter; Leuchtenberger, Wolfgang; Weckbecker, Christoph (2006). "Amino Acids". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_057.pub2.
  2. Silverman, S.N.; Phillips, A.A.; Weiss, G.M.; Wilkes, E.B.; Eiler, J.M.; Sessions, A.L. (2022). "Practical considerations for amino acid isotope analysis". Organic Geochemistry. 164: 104345. Bibcode:2022OrGeo.16404345S. doi: 10.1016/j.orggeochem.2021.104345 . S2CID   245556854.
  3. Gortner, R. A.; Hoffman, W. F. (1925). "l-Cystine". Organic Syntheses . 5: 39. doi:10.15227/orgsyn.005.0039.
  4. Cox, G.J.; King, H. (1930). "L-Tryptophane". Org. Synth. 10: 100. doi:10.15227/orgsyn.010.0100.
  5. Foster, G. L.; Shemin, D. (1938). "L-Histidine Monohydrochloride". Organic Syntheses. 18: 43. doi:10.15227/orgsyn.018.0043.
  6. Brand, E.; Sandberg, M. (1932). "d-Arginine Hydrochloride". Org. Synth. 12: 4. doi:10.15227/orgsyn.012.0004.
  7. Sharp, Matthew; Shields, Kevin; Lowery, Ryan; Lane, Jason; Partl, Jeremy; Holmer, Chase; Minevich, Julie; Souza, Eduardo De; Wilson, Jacob (September 21, 2015). "The effects of beef protein isolate and whey protein isolate supplementation on lean mass and strength in resistance trained individuals - a double blind, placebo controlled study". Journal of the International Society of Sports Nutrition. 12 (Suppl 1): P11. doi:10.1186/1550-2783-12-S1-P11. PMC   4595383 .
  8. Labeling of Infant Formula: Guidance for Industry U.S. Food and Drug Administration (2016) Accessed 11 December 2017.
  9. Boyle RJ, Ierodiakonou D, Khan T, Chivinge J, Robinson Z, Geoghegan N, Jarrold K, Afxentiou T, Reeves T, Cunha S, Trivella M, Garcia-Larsen V, Leonardi-Bee J (March 2016). "Hydrolysed formula and risk of allergic or autoimmune disease: systematic review and meta-analysis". BMJ. 352: i974. doi:10.1136/bmj.i974. PMC   4783517 . PMID   26956579.
  10. Cave, Nicholas J. (November 2006). "Hydrolyzed Protein Diets for Dogs and Cats". Veterinary Clinics of North America: Small Animal Practice. 36 (6): 1251–1268. doi:10.1016/j.cvsm.2006.08.008. PMID   17085233.