Hyperglycerolemia | |
---|---|
Specialty | Medical genetics |
Hyperglycerolemia, also known as glycerol kinase deficiency (GKD), is a genetic disorder where the enzyme glycerol kinase is deficient resulting in a build-up of glycerol in the body. Glycerol kinase is responsible for synthesizing triglycerides and glycerophospholipids in the body. Excess amounts of glycerol can be found in the blood and/ or urine. Hyperglycerolmia occurs more frequently in males. Hyperglycerolemia is listed as a "rare disease", which means it affects less than 200,000 people in the US population, or less than about 1 in 1500 people.
The Human Phenotype Ontology provided the following list of symptoms and signs for hyperglycerolemia: [1] Abnormality of metabolism/homeostasis, cognitive deficit, EMG abnormality, muscular hypotonia, myopathy, neurological speech impairment, primary adrenal insufficiency, short stature, cryptorchidism, EEG abnormality, lumbar hyperlordosis, reduced bone mineral density, scoliosis, seizures, abnormal facial shape, and adrenal insufficiency. Adrenal insufficiency is associated with the genetic disease X-linked adrenal hypoplasia congenita. [2] If the glycerol kinase gene is deleted then the NROB1 gene is also often deleted, which causes X-linked adrenal hypoplasia congenita. [3]
Hyperglycerolemia is caused by excess glycerol in the bloodstream. People with more severe cases of glycerol kinase deficiency may have a deletion of the GK gene that is large enough to see by routine cytogenetic evaluation. [4] It has been found an X-linked recessive inheritance pattern of the trait when a study was conducted on a grandfather and grandson. In addition, there is a high prevalence of [diabetes mellitus] in this family. [5] There is no known prevention for hyperglycerolemia because it is caused by a mutation or deletion of an individual's genetic code.
Hyperglycerolemia or glycerol kinase deficiency, is caused by a rare X-linked recessive genetic disorder caused by a mutation or a deletion in the glycerol kinase gene, located at the locus Xp21.3 of the X chromosome between base pairs 30,653,358 to 30,731,461. [6] Glycerol kinase catalyzes the phosphorylation of glycerol by ATP, yielding ADP and glycerol-3-phosphate. [7] It is more common in males because they only have one X chromosome, whereas females rarely manifest the disease because they have two X chromosomes. If hyperglycerolemia is caused by a mutation in the glycerol kinase gene then it generally causes an isolated glycerol kinase deficiency, resulting in the inability to synthesize triglycerides and glycerophospholipids. If hyperglycerolemia results from a deletion of the glycerol kinase gene then it often is part of a contiguous gene deletion syndrome with associated Duchenne muscular dystrophy and adrenal hypoplasia congenita. [8]
Glycerol and glycerol kinase activity analyses are usually not offered by routine general medical laboratories. [9] To diagnose hyperglycerolemia, blood and urine can be tested for the amounts of glycerol present. There are three clinical forms of GKD: infantile, juvenile, and adult. The infantile form is associated with severe developmental delay and results in a syndrome with Xp21 gene deletion with congenital adrenal hypoplasia and/or Duchenne muscular dystrophy. The infantile diagnosis is made by measuring plasma glycerol and is characterized by glycerol levels between 1.8 and 8.0 mmol/L and glyceroluria more than 360 mmol/24h. [9] To confirm the diagnosis, genetic testing of the Xp21 gene is definitive. [9] Children with GKD have severe hypoglycemic episodes and profound metabolic acidosis, or are completely symptom free. Individuals who are unable to form glucose from the glycerol released during triglyceride catabolism also the hypoglycemic episodes often disappear during adolescence. [9] Patients with the juvenile and adult forms often have no symptoms and are diagnosed fortuitously when a medical professional tests for another medical condition. The juvenile form is an uncommon form characterized by Reye syndrome-like clinical manifestations including episodic vomiting, acidemia, and disorders of consciousness. [10]
In adults, fibrates and statins have been prescribed to treat hyperglycerolemia by lowering blood glycerol levels. Fibrates are a class of drugs that are known as amphipathic carboxylic acids that are often used in combination with statins. Fibrates work by lowering blood triglyceride concentrations. When combined with statins, the combination will lower LDL cholesterol, lower blood triglycerides and increase HDL cholesterol levels. [11] If hyperglycerolemia is found in a young child without any family history of this condition, then it may be difficult to know whether the young child has the symptomatic or benign form of the disorder. [1] Common treatments include: a low-fat diet, IV glucose if necessary, monitor for insulin resistance and diabetes, evaluate for Duchenne muscular dystrophy, adrenal insufficiency & developmental delay. [9] The Genetic and Rare Diseases Information Center (GARD) does not list any treatments at this time. [1]
According to Clinicaltrials.gov, there are no current studies on hyperglycerolemia. Clinicaltrials.gov is a service of the U.S. National Institutes of Health. Recent research shows patients with high concentrations of blood triglycerides have an increased risk of coronary heart disease. Normally, a blood glycerol test is not ordered. The research was about a child having elevated levels of triglycerides when in fact the child had glycerol kinase deficiency. This condition is known as pseudo-hypertriglyceridemia, a falsely elevated condition of triglycerides. [12] Another group treated patients with elevated concentrations of blood triglycerides with little or no effect on reducing the triglycerides. A few laboratories can test for high concentrations of glycerol, and some laboratories can compare a glycerol-blanked triglycerides assay with the routine non-blanked method. [13] Both cases show how the human body may exhibit features suggestive of a medical disorder when in fact it is another medical condition causing the issue.
Abetalipoproteinemia is a disorder characterized by abnormal absorption of fat and fat-soluble vitamins from food. It is caused by a mutation in microsomal triglyceride transfer protein resulting in deficiencies in the apolipoproteins B-48 and B-100, which are used in the synthesis and exportation of chylomicrons and VLDL respectively. It is not to be confused with familial dysbetalipoproteinemia.
Adrenal insufficiency is a condition in which the adrenal glands do not produce adequate amounts of steroid hormones. The adrenal glands—also referred to as the adrenal cortex—normally secrete glucocorticoids, mineralocorticoids, and androgens. These hormones are important in regulating blood pressure, electrolytes, and metabolism as a whole. Deficiency of these hormones leads to symptoms ranging from abdominal pain, vomiting, muscle weakness and fatigue, low blood pressure, depression, mood and personality changes to organ failure and shock. Adrenal crisis may occur if a person having adrenal insufficiency experiences stresses, such as an accident, injury, surgery, or severe infection; this is a life-threatening medical condition resulting from severe deficiency of cortisol in the body. Death may quickly follow.
Hypertriglyceridemia is the presence of high amounts of triglycerides in the blood. Triglycerides are the most abundant fatty molecule in most organisms. Hypertriglyceridemia occurs in various physiologic conditions and in various diseases, and high triglyceride levels are associated with atherosclerosis, even in the absence of hypercholesterolemia and predispose to cardiovascular disease.
Combined hyperlipidemia is a commonly occurring form of hypercholesterolemia characterised by increased LDL and triglyceride concentrations, often accompanied by decreased HDL. On lipoprotein electrophoresis it shows as a hyperlipoproteinemia type IIB. It is the most commonly inherited lipid disorder, occurring in around one in 200 persons. In fact, almost one in five individuals who develop coronary heart disease before the age of 60 have this disorder.
Dystrophin is a rod-shaped cytoplasmic protein, and a vital part of a protein complex that connects the cytoskeleton of a muscle fiber to the surrounding extracellular matrix through the cell membrane. This complex is variously known as the costamere or the dystrophin-associated protein complex (DAPC). Many muscle proteins, such as α-dystrobrevin, syncoilin, synemin, sarcoglycan, dystroglycan, and sarcospan, colocalize with dystrophin at the costamere. It has a molecular weight of 427 kDa
Duchenne muscular dystrophy (DMD) is a severe type of muscular dystrophy that primarily affects boys. Muscle weakness usually begins around the age of four, and worsens quickly. Muscle loss typically occurs first in the thighs and pelvis followed by the arms. This can result in trouble standing up. Most are unable to walk by the age of 12. Affected muscles may look larger due to increased fat content. Scoliosis is also common. Some may have intellectual disability. Females with a single copy of the defective gene may show mild symptoms.
Becker muscular dystrophy is an X-linked recessive inherited disorder characterized by slowly progressing muscle weakness of the legs and pelvis. It is a type of dystrophinopathy. This is caused by mutations in the dystrophin gene, which encodes the protein dystrophin. Becker muscular dystrophy is related to Duchenne muscular dystrophy in that both result from a mutation in the dystrophin gene, but has a milder course.
Hyperlipidemia is abnormally high levels of any or all lipids or lipoproteins in the blood. The term hyperlipidemia refers to the laboratory finding itself and is also used as an umbrella term covering any of various acquired or genetic disorders that result in that finding. Hyperlipidemia represents a subset of dyslipidemia and a superset of hypercholesterolemia. Hyperlipidemia is usually chronic and requires ongoing medication to control blood lipid levels.
X-linked adrenal hypoplasia congenita is a genetic disorder that mainly affects males. It involves many endocrine tissues in the body, especially the adrenal glands.
Acid lipase disease or deficiency is a name used to describe two related disorders of fatty acid metabolism. Acid lipase disease occurs when the enzyme lysosomal acid lipase that is needed to break down certain fats that are normally digested by the body is lacking or missing. This results in the toxic buildup of these fats in the body's cells and tissues. These fatty substances, called lipids, include waxes, oils, and cholesterol.
Lipoprotein lipase deficiency is a genetic disorder in which a person has a defective gene for lipoprotein lipase, which leads to very high triglycerides, which in turn causes stomach pain and deposits of fat under the skin, and which can lead to problems with the pancreas and liver, which in turn can lead to diabetes. The disorder only occurs if a child acquires the defective gene from both parents. It is managed by restricting fat in diet to less than 20 g/day.
DAX1 is a nuclear receptor protein that in humans is encoded by the NR0B1 gene. The NR0B1 gene is located on the short (p) arm of the X chromosome between bands Xp21.3 and Xp21.2, from base pair 30,082,120 to base pair 30,087,136.
A contiguous gene syndrome (CGS), also known as a contiguous gene deletion syndrome, is a clinical phenotype caused by a chromosomal abnormality, such as a deletion or duplication that removes several genes lying in close proximity to one another on the chromosome. The combined phenotype of the patient is a combination of what is seen when any individual has disease-causing mutations in any of the individual genes involved in the deletion. While it can be caused by deleted material on a chromosome, it is not, strictly speaking, the same entity as a segmental aneuploidy syndrome. A segmental aneuploidy syndrome is a subtype of CGS that regularly recur, usually due to non-allelic homologous recombination between low copy repeats in the region. Most CGS involve the X chromosome and affect male individuals.
Familial partial lipodystrophy, also known as Köbberling–Dunnigan syndrome, is a rare genetic metabolic condition characterized by the loss of subcutaneous fat.
Familial hypertriglyceridemia is a genetic disorder characterized by the liver overproducing very-low-density lipoproteins (VLDL). As a result, an affected individual will have an excessive number of VLDL and triglycerides on a lipid profile. This genetic disorder usually follows an autosomal dominant inheritance pattern. The disorder presents clinically in patients with mild to moderate elevations in triglyceride levels. Familial hypertriglyceridemia is typically associated with other co-morbid conditions such as hypertension, obesity, and hyperglycemia. Individuals with the disorder are mostly heterozygous in an inactivating mutation of the gene encoding for lipoprotein lipase (LPL). This sole mutation can markedly elevate serum triglyceride levels. However, when combined with other medications or pathologies it can further elevate serum triglyceride levels to pathologic levels. Substantial increases in serum triglyceride levels can lead to certain clinical signs and the development of acute pancreatitis.
Glycerol kinase deficiency (GKD) is an X-linked recessive enzyme defect that is heterozygous in nature. Three clinically distinct forms of this deficiency have been proposed, namely infantile, juvenile, and adult. National Institutes of Health and its Office of Rare Diseases Research branch classifies GKD as a rare disease, known to affect fewer than 200,000 individuals in the United States. The responsible gene lies in a region containing genes in which deletions can cause Duchenne muscular dystrophy and adrenal hypoplasia congenita. Combinations of these three genetic defects including GKD are addressed medically as Complex GKD.
Jordans' anomaly is a familial abnormality of white blood cell morphology. Individuals with this condition exhibit persistent vacuolation of granulocytes and monocytes in the peripheral blood and bone marrow. Jordans' anomaly is associated with neutral lipid storage diseases.