IEC metric screw sized connectors

Last updated
M12 A-coded 5-pin connector: For each connector size, the A-coding is the inspecific pinout variant and the only variant defined in varying numbers of pins. M12A5.webp
M12 A-coded 5-pin connector: For each connector size, the A-coding is the inspecific pinout variant and the only variant defined in varying numbers of pins.
Ethernet cable with an M12 X-coded connector in one end and a modular connector in the other. M12X vs 8P8C ethernet connectors.webp
Ethernet cable with an M12 X-coded connector in one end and a modular connector in the other.

IEC metric screw sized connectors is a family of electrical connectors defined by IEC that are named according to their ISO metric screw thread, namely M5, M8 and M12. [1] The number gives their outer screw thread diameter in millimeters as with the identically named screws. However, the connectors are further classified by a so-called coding, denoted by one or more letters, which defines things like pin layout, shape of connecting surfaces and electrical properties. [2] [3]

Contents

The many types are partly to prevent incorrect connection. [2] The larger connector sizes are the most varied, with designated connectors ranging from analog and digital signals to AC and DC power. [4]

Each "coding" has a different keyway that prevents incorrect connection between incompatibly keyed connectors. [5]

Major uses include factory automation and transportation. [2] Products can be designed for high weather and chemical resistance (high IP rating) [2] as well as mechanical durability. [1]

Standard listing

Variants

M5
CodingPinsUses
A3-4 [7] Signal [4]
M8
CodingPinsUses
A3,4,6,8 [8] Signal, Ethernet [4]
B5 [8] DeviceNet [4]
D4 [4] Profinet [4]
P4 [8]
M12
CodingPinsUses
A3-5 () [6] DC power, sensors, actuators, 1 Gb/s Ethernet [3] [1]
CANopen, DeviceNet, Profibus PA [4]
8 [6]
12 [6]
17 [6]
B5 [6] non-Ethernet Fieldbus connections, commonly Profibus DP [3] [1] [4]
CAC power, including motor connections [3]
D4 [6] Industrial Ethernet protocols such as Profinet and EtherNet/IP; only Fast Ethernet (100 Mb/s) because of its two wire pairs. [3]
X8 [6] 10 Gb/s Ethernet [3] [1] [6]
Y8 [6] Power + 100 Mb/s Ethernet [6]
S2 + PE [9] AC power (single phase) [9]
S3 + PE [9] AC power (3-phase delta) [9]
K4 + PE [9] AC power (3-phase wye) [9]
M5 + PE [9] 3-phase motor + auxiliary wire pair [9]
T4 [9] DC power [9]
L4 + FE [9]
FO2 optical + 2 electric

Related Research Articles

<span class="mw-page-title-main">USB</span> Standard for computer data connections

Universal Serial Bus (USB) is an industry standard that allows data exchange and delivery of power between many types of electronics. It specifies its architecture, in particular its physical interface, and communication protocols for data transfer and power delivery to and from hosts, such as personal computers, to and from peripheral devices, e.g. displays, keyboards, and mass storage devices, and to and from intermediate hubs, which multiply the number of a host's ports.

<span class="mw-page-title-main">Ethernet over twisted pair</span> Ethernet physical layers using twisted-pair cables

Ethernet over twisted-pair technologies use twisted-pair cables for the physical layer of an Ethernet computer network. They are a subset of all Ethernet physical layers.

<span class="mw-page-title-main">Category 5 cable</span> Unshielded twisted pair communications cable

Category 5 cable (Cat 5) is a twisted pair cable for computer networks. Since 2001, the variant commonly in use is the Category 5e specification (Cat 5e). The cable standard provides performance of up to 100 MHz and is suitable for most varieties of Ethernet over twisted pair up to 2.5GBASE-T but more commonly runs at 1000BASE-T speeds. Cat 5 is also used to carry other signals such as telephone and video.

<span class="mw-page-title-main">Fast Ethernet</span> Ethernet standards that carry data at the nominal rate of 100 Mbit/s

In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common.

<span class="mw-page-title-main">Electrical connector</span> Device used to join electrical conductors

Components of an electrical circuit are electrically connected if an electric current can run between them through an electrical conductor. An electrical connector is an electromechanical device used to create an electrical connection between parts of an electrical circuit, or between different electrical circuits, thereby joining them into a larger circuit.

<span class="mw-page-title-main">HDMI</span> Proprietary interface for transmitting digital audio and video data

High-Definition Multimedia Interface (HDMI) is a proprietary audio/video interface for transmitting uncompressed video data and compressed or uncompressed digital audio data from an HDMI-compliant source device, such as a display controller, to a compatible computer monitor, video projector, digital television, or digital audio device. HDMI is a digital replacement for analog video standards.

<span class="mw-page-title-main">Small Form-factor Pluggable</span> Modular communications interface

Small Form-factor Pluggable (SFP) is a compact, hot-pluggable network interface module format used for both telecommunication and data communications applications. An SFP interface on networking hardware is a modular slot for a media-specific transceiver, such as for a fiber-optic cable or a copper cable. The advantage of using SFPs compared to fixed interfaces is that individual ports can be equipped with different types of transceivers as required, with the majority including optical line terminals, network cards, switches and routers.

<span class="mw-page-title-main">Power over Ethernet</span> System for delivering power along with data over an Ethernet cable

Power over Ethernet (PoE) describes any of several standards or ad hoc systems that pass electric power along with data on twisted-pair Ethernet cabling. This allows a single cable to provide both a data connection and enough electricity to power networked devices such as wireless access points (WAPs), IP cameras and VoIP phones.

<span class="mw-page-title-main">Industrial and multiphase power plugs and sockets</span> Type of plug and socket design

Industrial and multiphase plugs and sockets provide a connection to the electrical mains rated at higher voltages and currents than household plugs and sockets. They are generally used in polyphase systems, with high currents, or when protection from environmental hazards is required. Industrial outlets may have weatherproof covers, waterproofing sleeves, or may be interlocked with a switch to prevent accidental disconnection of an energized plug. Some types of connectors are approved for hazardous areas such as coal mines or petrochemical plants, where flammable gas may be present.

The media-independent interface (MII) was originally defined as a standard interface to connect a Fast Ethernet medium access control (MAC) block to a PHY chip. The MII is standardized by IEEE 802.3u and connects different types of PHYs to MACs. Being media independent means that different types of PHY devices for connecting to different media can be used without redesigning or replacing the MAC hardware. Thus any MAC may be used with any PHY, independent of the network signal transmission medium.

<span class="mw-page-title-main">Industrial Ethernet</span> Use of Ethernet in an industrial environment

Industrial Ethernet (IE) is the use of Ethernet in an industrial environment with protocols that provide determinism and real-time control. Protocols for industrial Ethernet include EtherCAT, EtherNet/IP, PROFINET, POWERLINK, SERCOS III, CC-Link IE, and Modbus TCP. Many industrial Ethernet protocols use a modified media access control (MAC) layer to provide low latency and determinism. Some microprocessors provide industrial Ethernet support.

International standard ISO/IEC 11801Information technology — Generic cabling for customer premises specifies general-purpose telecommunication cabling systems that are suitable for a wide range of applications. It is published by ISO/IEC JTC 1/SC 25/WG 3 of the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). It covers both balanced copper cabling and optical fibre cabling.

EtherCAT is an Ethernet-based fieldbus system developed by Beckhoff Automation. The protocol is standardized in IEC 61158 and is suitable for both hard and soft real-time computing requirements in automation technology.

<span class="mw-page-title-main">Ethernet physical layer</span> Electrical or optical properties between network devices

The physical-layer specifications of the Ethernet family of computer network standards are published by the Institute of Electrical and Electronics Engineers (IEEE), which defines the electrical or optical properties and the transfer speed of the physical connection between a device and the network or between network devices. It is complemented by the MAC layer and the logical link layer. An implementation of a specific physical layer is commonly referred to as PHY.

<span class="mw-page-title-main">Modular connector</span> Electrical connector commonly used in telephone and computer networks

A modular connector is a type of electrical connector for cords and cables of electronic devices and appliances, such as in computer networking, telecommunication equipment, and audio headsets.

<span class="mw-page-title-main">10 Gigabit Ethernet</span> Standards for Ethernet at ten times the speed of Gigabit Ethernet

10 Gigabit Ethernet is a group of computer networking technologies for transmitting Ethernet frames at a rate of 10 gigabits per second. It was first defined by the IEEE 802.3ae-2002 standard. Unlike previous Ethernet standards, 10GbE defines only full-duplex point-to-point links which are generally connected by network switches; shared-medium CSMA/CD operation has not been carried over from the previous generations of Ethernet standards so half-duplex operation and repeater hubs do not exist in 10GbE. The first standard for faster 100 Gigabit Ethernet links was approved in 2010.

<span class="mw-page-title-main">HDBaseT</span> Point-to-point media connection over category cable

HDBaseT is a consumer electronic (CE) and commercial connectivity standard for transmission of uncompressed ultra-high-definition video, digital audio, DC power, Ethernet, USB 2.0, and other control communication over a single category cable up to 100 m (328 ft) in length, terminated using the same 8P8C modular connectors as used in Ethernet networks. HDBaseT technology is promoted and advanced by the HDBaseT Alliance.

Physical media refers to the physical materials that are used to store or transmit information in data communications. These physical media are generally physical objects made of materials such as copper or glass. They can be touched and felt, and have physical properties such as weight and color. For a number of years, copper and glass were the only media used in computer networking.

<span class="mw-page-title-main">USB-C</span> 24-pin USB connector system

USB-C, or USB Type-C, is a 24-pin connector that supersedes previous USB connectors and can carry audio, video and other data, e.g., to drive multiple displays or to store a backup to an external drive. It can also provide and receive power, such as powering a laptop or a mobile phone. It is applied not only by USB technology, but also by other protocols, including Thunderbolt, PCIe, HDMI, DisplayPort, and others. It is extensible to support future standards.

IO-Link is a short distance, bi-directional, digital, point-to-point, wired, industrial communications networking standard used for connecting digital sensors and actuators to either a type of industrial fieldbus or a type of industrial Ethernet. Its objective is to provide a technological platform that enables the development and use of sensors and actuators that can produce and consume enriched sets of data that in turn can be used for economically optimizing industrial automated processes and operations. The technology standard is managed by the industry association Profibus and Profinet International.

References

  1. 1 2 3 4 5 "Industrial Ethernet Connector Round-Up". Fluke Networks. 16 January 2020. Retrieved 23 December 2021. When it comes to industrial Ethernet, M12 and M8 connectors are by far the most popular and universally adopted for industrial control systems. They come in a variety of pin counts with the 4- or 8-pin varieties required for Ethernet and they can be used with twisted-pair category cable, from category 5e to fully shielded category 7A. (…) A-coded M12 connectors used primarily for sensors and actuators can support 1 Gbit/s Ethernet, B-coded connectors are for Profibus applications, and C-coded connectors are used for AC power. For industrial Ethernet, 4-pin D-coded can support 100 Mbit/s Ethernet, but X-coded connectors with 8-pin counts and superior shielding are gaining ground as they can support higher-speed Ethernet up to 10 Gbit/s when used with category 6A or higher cabling. And when it comes to PoE, the 4-pin M12 can support Type 1 PoE, while the 8-pin M12 is required for Type 2 and above. (…) Like the M12, M8 connectors are also coded with the 4-pin D-coded connectors supporting 100 Mbit/s and Type 1 PoE and the 8-pin version supporting up to 10 Gbit/s and Type 2 and above PoE. While RJ-45 connectors are the de facto interface for Ethernet, and they are available in ruggedized versions for harsher environments, M12 and M8 locking connectors are far more durable and better designed to handle the ongoing vibration of industrial equipment since they are locked into place.
  2. 1 2 3 4 "What does the coding mean on M12 connectors?". 2021-05-26. Retrieved 23 December 2021.
  3. 1 2 3 4 5 6 "Need an M12 Connector? Don't Forget to Ask about Coding!". 2021-03-26. Retrieved 23 December 2021.
  4. 1 2 3 4 5 6 7 8 "M5 to M12 circular connectors Product overview 2020/2021" (PDF). Phoenix Contact. 17 December 2019. Archived from the original (PDF) on 6 February 2020. Retrieved 2 January 2021.
  5. "M12 connector coding for automation and industry 4.0 compliance". Machine Design. Altech Corporation.
  6. 1 2 3 4 5 6 7 8 9 10 11 "Coding of M12 Cordsets" (PDF). Murrelektronik. 16 August 2019. Retrieved 25 December 2021.
  7. "Buccaneer M5 Series" (PDF). 4 November 2021. Retrieved 2 January 2022.
  8. 1 2 3 "Buccaneer M8 Series" (PDF). 4 November 2021. Retrieved 2 January 2022.
  9. 1 2 3 4 5 6 7 8 9 10 11 "Get amped with M12 Power!". Phoenix Contact. Archived from the original on 27 December 2021. Retrieved 27 December 2021.