IMOD (software)

Last updated
IMOD
Developer(s) David Mastronarde et al. at the University of Colorado
Stable release
4.9.10 / September 26, 2018;4 years ago (2018-09-26)
Repository bio3d.colorado.edu/imod/nightlyBuilds
Operating system Windows, Mac OS X, Linux
Type Electron microscopy
License GPLv2
Website bio3d.colorado.edu/imod

IMOD is an open-source, cross-platform suite of modeling, display and image processing programs used for 3D reconstruction and modeling of microscopy images with a special emphasis on electron microscopy data. IMOD has been used across a range of scales from macromolecule structures [1] to organelles [2] [3] [4] to whole cells [5] and can also be used for optical sections. [6] [7] IMOD includes tools for image reconstruction, image segmentation, 3D mesh modeling and analysis of 2D and 3D data.

Contents

IMOD was developed at the Boulder Laboratory for 3-D Electron Microscopy of Cells. IMOD was first released in 1995, [8] is free to download and use for any purpose.


Main programs

IMOD includes over 180 command line programs listed here and three main GUI programs:

Supported file formats

Image Format: The main image format supported by IMOD is MRC file format, which typically have a ".st", ".mrc" or ".rec" extensions and represent various types of "image stacks" which together might represent a tilt series or 3D volume. IMOD will also open TIF files and includes a set of programs to convert between image formats including common microscopy formats like ".raw" and ".dm4". Vector Format: IMOD saves and opens vector data in the form of contour (polygons) and meshes in an IMOD binary file format, typically with a ".mod" or ".fid" extension. These IMOD model files are typically over-laid over the top of an image file and can be used to annotate and segment regions of interest. Models can consists of one or more objects, where each object can contain closed, open or scattered point "contours" which are used to generate a 3D mesh.

Main features

See also

Related Research Articles

<span class="mw-page-title-main">Scanning electron microscope</span> Type of electron microscope

A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition of the sample. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image. In the most common SEM mode, secondary electrons emitted by atoms excited by the electron beam are detected using a secondary electron detector. The number of secondary electrons that can be detected, and thus the signal intensity, depends, among other things, on specimen topography. Some SEMs can achieve resolutions better than 1 nanometer.

<span class="mw-page-title-main">Transmission electron microscopy</span> Technique in microscopy

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device.

<span class="mw-page-title-main">Tomography</span> Imaging by sections or sectioning using a penetrative wave

Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram.

<span class="mw-page-title-main">Volume rendering</span> Representing a 3D-modeled object or dataset as a 2D projection

In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.

<span class="mw-page-title-main">Transmission electron cryomicroscopy</span>

Transmission electron cryomicroscopy (CryoTEM), commonly known as cryo-EM, is a form of cryogenic electron microscopy, more specifically a type of transmission electron microscopy (TEM) where the sample is studied at cryogenic temperatures. Cryo-EM is gaining popularity in structural biology.

<span class="mw-page-title-main">MeshLab</span>

MeshLab is a 3D mesh processing software system that is oriented to the management and processing of unstructured large meshes and provides a set of tools for editing, cleaning, healing, inspecting, rendering, and converting these kinds of meshes. MeshLab is free and open-source software, subject to the requirements of the GNU General Public License (GPL), version 2 or later, and is used as both a complete package and a library powering other software. It is well known in the more technical fields of 3D development and data handling.

<span class="mw-page-title-main">Electron tomography</span>

Electron tomography (ET) is a tomography technique for obtaining detailed 3D structures of sub-cellular, macro-molecular, or materials specimens. Electron tomography is an extension of traditional transmission electron microscopy and uses a transmission electron microscope to collect the data. In the process, a beam of electrons is passed through the sample at incremental degrees of rotation around the center of the target sample. This information is collected and used to assemble a three-dimensional image of the target. For biological applications, the typical resolution of ET systems are in the 5–20 nm range, suitable for examining supra-molecular multi-protein structures, although not the secondary and tertiary structure of an individual protein or polypeptide. Recently, atomic resolution in 3D electron tomography reconstructions has been demonstrated.

<span class="mw-page-title-main">3D Slicer</span> Image analysis and scientific visualization software

3D Slicer (Slicer) is a free and open source software package for image analysis and scientific visualization. Slicer is used in a variety of medical applications, including autism, multiple sclerosis, systemic lupus erythematosus, prostate cancer, lung cancer, breast cancer, schizophrenia, orthopedic biomechanics, COPD, cardiovascular disease and neurosurgery.

Bioimage informatics is a subfield of bioinformatics and computational biology. It focuses on the use of computational techniques to analyze bioimages, especially cellular and molecular images, at large scale and high throughput. The goal is to obtain useful knowledge out of complicated and heterogeneous image and related metadata.

Biology data visualization is a branch of bioinformatics concerned with the application of computer graphics, scientific visualization, and information visualization to different areas of the life sciences. This includes visualization of sequences, genomes, alignments, phylogenies, macromolecular structures, systems biology, microscopy, and magnetic resonance imaging data. Software tools used for visualizing biological data range from simple, standalone programs to complex, integrated systems.

<span class="mw-page-title-main">ScanIP</span>

Synopsys Simpleware ScanIP is a 3D image processing and model generation software program developed by Synopsys Inc. to visualise, analyse, quantify, segment and export 3D image data from magnetic resonance imaging (MRI), computed tomography (CT), microtomography and other modalities for computer-aided design (CAD), finite element analysis (FEA), computational fluid dynamics (CFD), and 3D printing. The software is used in the life sciences, materials science, nondestructive testing, reverse engineering and petrophysics.

<span class="mw-page-title-main">Avizo (software)</span> Software for scientific and industrial data visualization and analysis

Avizo is a general-purpose commercial software application for scientific and industrial data visualization and analysis.

Serial block-face scanning electron microscopy is a method to generate high resolution three-dimensional images from small samples. The technique was developed for brain tissue, but it is widely applicable for any biological samples. A serial block-face scanning electron microscope consists of an ultramicrotome mounted inside the vacuum chamber of a scanning electron microscope. Samples are prepared by methods similar to that in transmission electron microscopy (TEM), typically by fixing the sample with aldehyde, staining with heavy metals such as osmium and uranium then embedding in an epoxy resin. The surface of the block of resin-embedded sample is imaged by detection of back-scattered electrons. Following imaging the ultramicrotome is used to cut a thin section from the face of the block. After the section is cut, the sample block is raised back to the focal plane and imaged again. This sequence of sample imaging, section cutting and block raising can acquire many thousands of images in perfect alignment in an automated fashion. Practical serial block-face scanning electron microscopy was invented in 2004 by Winfried Denk at the Max-Planck-Institute in Heidelberg and is commercially available from Gatan Inc., Thermo Fisher Scientific (VolumeScope) and ConnectomX.

<span class="mw-page-title-main">Single particle analysis</span>

Single particle analysis is a group of related computerized image processing techniques used to analyze images from transmission electron microscopy (TEM). These methods were developed to improve and extend the information obtainable from TEM images of particulate samples, typically proteins or other large biological entities such as viruses. Individual images of stained or unstained particles are very noisy, and so hard to interpret. Combining several digitized images of similar particles together gives an image with stronger and more easily interpretable features. An extension of this technique uses single particle methods to build up a three-dimensional reconstruction of the particle. Using cryo-electron microscopy it has become possible to generate reconstructions with sub-nanometer resolution and near-atomic resolution first in the case of highly symmetric viruses, and now in smaller, asymmetric proteins as well. Single particle analysis can also be performed by induced coupled plasma mass spectroscopy (ICP-MS).

<span class="mw-page-title-main">Crystallographic image processing</span>

Crystallographic image processing (CIP) is traditionally understood as being a set of key steps in the determination of the atomic structure of crystalline matter from high-resolution electron microscopy (HREM) images obtained in a transmission electron microscope (TEM) that is run in the parallel illumination mode. The term was created in the research group of Sven Hovmöller at Stockholm University during the early 1980s and became rapidly a label for the "3D crystal structure from 2D transmission/projection images" approach. Since the late 1990s, analogous and complementary image processing techniques that are directed towards the achieving of goals with are either complementary or entirely beyond the scope of the original inception of CIP have been developed independently by members of the computational symmetry/geometry, scanning transmission electron microscopy, scanning probe microscopy communities, and applied crystallography communities.

<span class="mw-page-title-main">Amira (software)</span> Software platform for 3D and 4D data visualization

Amira is a software platform for 3D and 4D data visualization, processing, and analysis. It is being actively developed by Thermo Fisher Scientific in collaboration with the Zuse Institute Berlin (ZIB), and commercially distributed by Thermo Fisher Scientific.

Neuronal tracing, or neuron reconstruction is a technique used in neuroscience to determine the pathway of the neurites or neuronal processes, the axons and dendrites, of a neuron. From a sample preparation point of view, it may refer to some of the following as well as other genetic neuron labeling techniques,

<span class="mw-page-title-main">Aphelion (software)</span> Image processing and analysis software suite

The Aphelion Imaging Software Suite is a software suite that includes three base products - Aphelion Lab, Aphelion Dev, and Aphelion SDK for addressing image processing and image analysis applications. The suite also includes a set of extension programs to implement specific vertical applications that benefit from imaging techniques.

<span class="mw-page-title-main">Studierfenster</span>

Studierfenster or StudierFenster (SF) is a free, non-commercial open science client/server-based medical imaging processing online framework. It offers capabilities, like viewing medical data (computed tomography (CT), magnetic resonance imaging (MRI), etc.) in two- and three-dimensional space directly in standard web browsers, like Google Chrome, Mozilla Firefox, Safari, and Microsoft Edge. Other functionalities are the calculation of medical metrics (dice score and Hausdorff distance), manual slice-by-slice outlining of structures in medical images (segmentation), manual placing of (anatomical) landmarks in medical image data, viewing medical data in virtual reality, a facial reconstruction and registration of medical data for augmented reality, one click showcases for COVID-19 and veterinary scans, and a Radiomics module.

J. Richard McIntosh is a Distinguished Professor Emeritus in Molecular, Cellular, and Developmental Biology at the University of Colorado Boulder. McIntosh first graduated from Harvard with a BA in Physics in 1961, and again with a Ph.D. in Biophysics in 1968. He began his teaching career at Harvard but has spent most of his career at the University of Colorado Boulder. At the University of Colorado Boulder, McIntosh taught biology courses at both the undergraduate and graduate levels. Additionally, he created an undergraduate course in the biology of cancer towards the last several years of his teaching career. McIntosh's research career looks at a variety of things, including different parts of mitosis, microtubules, and motor proteins.

References

  1. Nicastro, Daniela; Schwartz, Cindi; Pierson, Jason; Gaudette, Richard; Porter, Mary E.; McIntosh, J. Richard (2006). "The Molecular Architecture of Axonemes Revealed by Cryoelectron Tomography". Science. 313 (5789): 944–948. Bibcode:2006Sci...313..944N. doi:10.1126/science.1128618. PMID   16917055. S2CID   43436284.
  2. Pelletier, Laurence; O'Tool, Eileen; Schwager, Anne; Hyman, Anthony A.; Müller-Reichert, Thomas (2006). "Centriole assembly in Caenorhabditis elegans". Nature. 444 (7119): 619–623. Bibcode:2006Natur.444..619P. doi:10.1038/nature05318. PMID   17136092. S2CID   30451935.
  3. Marsh, Brad J.; Mastronarde, David N.; Buttle, Karolyn F.; Howell, Kathryn E.; McIntosh, J. Richard (2001). "Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography". Proceedings of the National Academy of Sciences. 98 (5): 2399–2406. doi: 10.1073/pnas.051631998 . PMC   30150 . PMID   11226251.
  4. Hayashi, Mitsuko; Andrea, Raimondi; O'Toole, Eileen; Summer, Paradise; Chiara, Collesi; Ottavio, Cremona; Shawn M., Ferguson; De Camilli, Pietro (2008). "Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons". PNAS. 105 (6): 2175–2180. Bibcode:2008PNAS..105.2175H. doi: 10.1073/pnas.0712171105 . PMC   2538894 . PMID   18250322.
  5. Höög, Johanna L.; Schwartz, Cindi; Noon, Angela T.; O'Toole, Eileen T.; Mastronarde, David N.; McIntosh, J. Richard; Antony, Claude (2007). "Organization of Interphase Microtubules in Fission Yeast Analyzed by Electron Tomography". Developmental Cell. 12 (3): 349–361. doi: 10.1016/j.devcel.2007.01.020 . PMID   17336902.
  6. Haber, SN; Kim KS; Mailly P; Calzavara R (2006). "Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning". J. Neurosci. 26 (32): 8368–8376. doi: 10.1523/JNEUROSCI.0271-06.2006 . PMC   6673798 . PMID   16899732.
  7. Mailly, P; Haber SN; Groenewegen HJ; Deniau JM (2010). "A 3D multi-modal and multi-dimensional digital brain model as a framework for data sharing". J Neurosci Methods. 194 (1): 56–63. doi:10.1016/j.jneumeth.2009.12.014. PMID   20043949. S2CID   11286012.
  8. Kremer, James R.; Mastronarde, David N.; McIntosh, J. Richard (1996). "Computer Visualization of Three-Dimensional Image Data Using IMOD". Journal of Structural Biology. 116 (1): 71–76. doi:10.1006/jsbi.1996.0013. PMID   8742726.