Idiopathic generalized epilepsy

Last updated
Idiopathic generalized epilepsy
Specialty Neurology

Idiopathic generalized epilepsy (IGE) is a group of epileptic disorders that are believed to have a strong underlying genetic basis. IGE is considered a subgroup of Genetic Generalized Epilepsy (GGE). [1] Patients with an IGE subtype are typically otherwise normal and have no structural brain abnormalities. People also often have a family history of epilepsy and seem to have a genetically predisposed risk of seizures. IGE tends to manifest itself between early childhood and adolescence although it can be eventually diagnosed later. The genetic cause of some IGE types is known, though inheritance does not always follow a simple monogenic mechanism.

Contents

Types

Benign myoclonic epilepsy in infancy

This form of epilepsy is very rare, representing less than 1% of cases, and is twice as prevalent in boys compared to girls. Age of seizure onset is between 5 months and 5 years of age. Children with this disorder often present with head drops and brief arm jerks. Although there is believed to be a genetic basis for this disorder, no genetic linkage has been shown.

Generalized epilepsy with febrile seizures plus

Generalized epilepsy with febrile seizures plus (GEFS+) is an umbrella for many other syndromes that share causative genes. Patients experience febrile seizures early in childhood and grow to experience other types of seizures later in life. Known causative genes for GEFS+ are the sodium channel α subunit genes SCN1A and SCN2A and the β subunit gene SCN1B. Mutations in the GABAA receptor γ subunit GABRG1 are also causative for this disorder.

Epilepsy with myoclonic absences

This rare epilepsy has a wide age range of presentation (from the first year of life through the early teens). This epilepsy is characterized by absence seizures concurrent with myoclonic jerks, typically occurring several times daily. The genetics of this disorder have not been delineated. Seizures from this disorder often cease within 5 years.

Epilepsy with myoclonic-astatic seizures

Originally called Doose syndrome, epilepsy with myoclonic-astatic seizures accounts for ~2% of childhood epilepsies. Children with this disorder have incredibly brief (<100ms) myoclonic jerks followed by equally brief loss of muscle tone, sometimes resulting in dangerous falls. Some patients have much longer lasting seizures of this type. Many patients with this disorder also have absence seizures. This is believed to be a polygenic disorder.

Childhood absence epilepsy

Also known as pyknolepsy, childhood absence epilepsy (CAE) represents up to 10% of all childhood epilepsies. It first manifests in childhood between the ages of 4 and 8 as brief periods of unconsciousness (absence). Mutations in the calcium channel α subunit encoding gene CACNA1H and the GABA receptor γ subunit encoding gene GABRG2 yield susceptibility for CAE.

Juvenile absence epilepsy

Juvenile absence epilepsy is similar to CAE but has an onset between ages 9 and 13. Other differences are that patients with this disorder have less frequent but longer absence seizures than those with CAE. There are a number of possible genetic loci for this disorder, though no causative genes have been demonstrated.

Juvenile myoclonic epilepsy

Also known as Janz syndrome, juvenile myoclonic epilepsy (JME) is a common form of epilepsy, accounting for ~10% of all cases and ~25% of cases of idiopathic generalized epilepsies. Many children with CAE go on to develop JME. JME first presents between the ages of 12 and 18 with prominent myoclonic seizures. These seizures tend to occur early in the morning. Patients with JME may also have generalized tonic-clonic seizures and absence seizures. Linkage of this disorder has been shown to mutations in the genes GABRA1, CACNB4, CLCN2, GABRD2, EFHC1, and EFHC2.

Epilepsy with generalized tonic-clonic seizures only

This type of IGE can present at almost any age and is poorly characterized. Because of its loose definition, it is impossible to supply an accurate estimate of its prevalence. As implied by its name, patients with this disorder present only with tonic-clonic seizures.

Related Research Articles

Absence seizures are one of several kinds of generalized seizures. In the past, absence epilepsy was referred to as "pyknolepsy," a term derived from the Greek word "pyknos," signifying "extremely frequent" or "grouped".These seizures are sometimes referred to as petit mal seizures ; however, usage of this terminology is no longer recommended. Absence seizures are characterized by a brief loss and return of consciousness, generally not followed by a period of lethargy. Absence seizures are most common in children. They affect both sides of the brain.

<span class="mw-page-title-main">Myoclonus</span> Involuntary, irregular muscle twitch

Myoclonus is a brief, involuntary, irregular twitching of a muscle, a joint, or a group of muscles, different from clonus, which is rhythmic or regular. Myoclonus describes a medical sign and, generally, is not a diagnosis of a disease. These myoclonic twitches, jerks, or seizures are usually caused by sudden muscle contractions or brief lapses of contraction. The most common circumstance under which they occur is while falling asleep. Myoclonic jerks occur in healthy people and are experienced occasionally by everyone. However, when they appear with more persistence and become more widespread they can be a sign of various neurological disorders. Hiccups are a kind of myoclonic jerk specifically affecting the diaphragm. When a spasm is caused by another person it is known as a provoked spasm. Shuddering attacks in babies fall in this category.

<span class="mw-page-title-main">Lennox–Gastaut syndrome</span> Medical condition

Lennox–Gastaut syndrome (LGS) is a complex, rare, and severe childhood-onset epilepsy syndrome. It is characterized by multiple and concurrent seizure types including tonic seizure, cognitive dysfunction, and slow spike waves on electroencephalogram (EEG), which are very abnormal. Typically, it presents in children aged 3–5 years and most of the time persists into adulthood with slight changes in the electroclinical phenotype. It has been associated with perinatal injuries, congenital infections, brain malformations, brain tumors, genetic disorders such as tuberous sclerosis and numerous gene mutations. Sometimes LGS is observed after infantile epileptic spasm syndrome. The prognosis for LGS is marked by a 5% mortality in childhood and persistent seizures into adulthood.

Reflex seizures are epileptic seizures that are consistently induced by a specific stimulus or trigger making them distinct from other epileptic seizures, which are usually unprovoked. Reflex seizures are otherwise similar to unprovoked seizures and may be focal, generalized, myoclonic, or absence seizures. Epilepsy syndromes characterized by repeated reflex seizures are known as reflex epilepsies. Photosensitive seizures are often myoclonic, absence, or focal seizures in the occipital lobe, while musicogenic seizures are associated with focal seizures in the temporal lobe.

Myoclonic epilepsy refers to a family of epilepsies that present with myoclonus. When myoclonic jerks are occasionally associated with abnormal brain wave activity, it can be categorized as myoclonic seizure. If the abnormal brain wave activity is persistent and results from ongoing seizures, then a diagnosis of myoclonic epilepsy may be considered.

Epileptic spasms is an uncommon-to-rare epileptic disorder in infants, children and adults. One of the other names of the disorder, West syndrome, is in memory of the English physician, William James West (1793–1848), who first described it in an article published in The Lancet in 1841. The original case actually described his own son, James Edwin West (1840–1860). Other names for it are "generalized flexion epilepsy", "infantile epileptic encephalopathy", "infantile myoclonic encephalopathy", "jackknife convulsions", "massive myoclonia" and "Salaam spasms". The term "infantile spasms" can be used to describe the specific seizure manifestation in the syndrome, but is also used as a synonym for the syndrome itself. West syndrome in modern usage is the triad of infantile spasms, a pathognomonic EEG pattern, and developmental regression – although the international definition requires only two out of these three elements.

Generalized epilepsy with febrile seizures plus (GEFS+) is a syndromic autosomal dominant disorder where affected individuals can exhibit numerous epilepsy phenotypes. GEFS+ can persist beyond early childhood. GEFS+ is also now believed to encompass three other epilepsy disorders: severe myoclonic epilepsy of infancy (SMEI), which is also known as Dravet's syndrome, borderline SMEI (SMEB), and intractable epilepsy of childhood (IEC). There are at least six types of GEFS+, delineated by their causative gene. Known causative gene mutations are in the sodium channel α subunit genes SCN1A, an associated β subunit SCN1B, and in a GABAA receptor γ subunit gene, in GABRG2 and there is another gene related with calcium channel the PCDH19 which is also known as Epilepsy Female with Mental Retardation. Penetrance for this disorder is estimated at 60%.

Dravet syndrome (DS), previously known as severe myoclonic epilepsy of infancy (SMEI), is an autosomal dominant genetic disorder which causes a catastrophic form of epilepsy, with prolonged seizures that are often triggered by hot temperatures or fever. It is very difficult to treat with anticonvulsant medications. It often begins before one year of age, with six months being the age that seizures, char­ac­ter­ized by prolonged convulsions and triggered by fever, usually begin.

Childhood absence epilepsy (CAE), formerly known as pyknolepsy, is an idiopathic generalized epilepsy which occurs in otherwise normal children. The age of onset is between 4–10 years with peak age between 5–7 years. Children have absence seizures which although brief, they occur frequently, sometimes in the hundreds per day. The absence seizures of CAE involve abrupt and severe impairment of consciousness. Mild automatisms are frequent, but major motor involvement early in the course excludes this diagnosis. The EEG demonstrates characteristic "typical 3Hz spike-wave" discharges. The presence of any other seizure type at time of diagnosis rules out the diagnose of CAE. Prognosis is usually good in well-defined cases of CAE with most patients "growing out" of their epilepsy.

Juvenile myoclonic epilepsy (JME), also known as Janz syndrome or impulsive petit mal, is a form of hereditary, idiopathic generalized epilepsy, representing 5–10% of all epilepsy cases. Typically it first presents between the ages of 12 and 18 with myoclonic seizures. These events typically occur after awakening from sleep, during the evening or when sleep-deprived. JME is also characterized by generalized tonic–clonic seizures, and a minority of patients have absence seizures. It was first described by Théodore Herpin in 1857. Understanding of the genetics of JME has been rapidly evolving since the 1990s, and over 20 chromosomal loci and multiple genes have been identified. Given the genetic and clinical heterogeneity of JME some authors have suggested that it should be thought of as a spectrum disorder.

Unverricht–Lundborg disease is the most common form of an uncommon group of genetic epilepsy disorders called the progressive myoclonus epilepsies. It is caused due to a mutation in the cystatin B gene (CSTB). The disease is named after Heinrich Unverricht, who first described it in 1891, and Herman Bernhard Lundborg, who researched it in greater detail in 1901 and 1903. ULD onsets in children between the ages of 6 and 16; there are no known cases in which the person was older than 18. Most cases originate from the Baltic region of Europe, though many have been reported from countries in the Mediterranean.

<span class="mw-page-title-main">Generalized epilepsy</span> Epilepsy syndrome that is characterised by generalised seizures with no apparent cause

Generalized epilepsy is a form of epilepsy characterised by generalised seizures with no apparent cause. Generalized seizures, as opposed to focal seizures, are a type of seizure that impairs consciousness and distorts the electrical activity of the whole or a larger portion of the brain.

Progressive Myoclonic Epilepsies (PME) are a rare group of inherited neurodegenerative diseases characterized by myoclonus, resistance to treatment, and neurological deterioration. The cause of PME depends largely on the type of PME. Most PMEs are caused by autosomal dominant or recessive and mitochondrial mutations. The location of the mutation also affects the inheritance and treatment of PME. Diagnosing PME is difficult due to their genetic heterogeneity and the lack of a genetic mutation identified in some patients. The prognosis depends largely on the worsening symptoms and failure to respond to treatment. There is no current cure for PME and treatment focuses on managing myoclonus and seizures through antiepileptic medication (AED).

SCN1A Protein-coding gene in the species Homo sapiens

Sodium channel protein type 1 subunit alpha (SCN1A), is a protein which in humans is encoded by the SCN1A gene.

<span class="mw-page-title-main">Rolandic epilepsy</span> Most common epilepsy syndrome in childhood, usually subsiding with age

Benign Rolandic epilepsy or self-limited epilepsy with centrotemporal spikes is the most common epilepsy syndrome in childhood. Most children will outgrow the syndrome, hence the label benign. The seizures, sometimes referred to as sylvian seizures, start around the central sulcus of the brain.

Panayiotopoulos syndrome is a common idiopathic childhood-related seizure disorder that occurs exclusively in otherwise normal children and manifests mainly with autonomic epileptic seizures and autonomic status epilepticus. An expert consensus has defined Panayiotopoulos syndrome as "a benign age-related focal seizure disorder occurring in early and mid-childhood. It is characterized by seizures, often prolonged, with predominantly autonomic symptoms, and by an EEG [electroencephalogram] that shows shifting and/or multiple foci, often with occipital predominance."

Myoclonic astatic epilepsy (MAE), also known as myoclonic atonic epilepsy or Doose syndrome, is a generalized idiopathic epilepsy. It is characterized by the development of myoclonic seizures and/or myoclonic astatic seizures. Some of the common monogenic causes include mutations in the genes SLC6A1 (3p25.3),CHD2 (15q26.1), AP2M1 (10q23.2).

Jeavons syndrome is a type of epilepsy. It is one of the most distinctive reflex syndromes of idiopathic generalized epilepsy characterized by the triad of eyelid myoclonia with and without absences, eye-closure-induced seizures, EEG paroxysms, or both, and photosensitivity. Eyelid myoclonia with or without absences is a form of epileptic seizure manifesting with myoclonic jerks of the eyelids with or without a brief absence. These are mainly precipitated by closing of the eyes and lights. Eyelid myoclonia is the defining seizure type of Jeavons syndrome.

Epilepsy-intellectual disability in females also known as PCDH19 gene-related epilepsy or epileptic encephalopathy, early infantile, 9 (EIEE9), is a rare type of epilepsy that affects predominately females and is characterized by clusters of brief seizures, which start in infancy or early childhood, and is occasionally accompanied by varying degrees of cognitive impairment. The striking pattern of onset seizures at a young age, genetic testing and laboratory results, potential developmental delays or developmental regression and associated disorders, eases diagnosis.

People with epilepsy may be classified into different syndromes based on specific clinical features. These features include the age at which seizures begin, the seizure types, and EEG findings, among others. Identifying an epilepsy syndrome is useful as it helps determine the underlying causes as well as deciding what anti-seizure medication should be tried. Epilepsy syndromes are more commonly diagnosed in infants and children. Some examples of epilepsy syndromes include benign rolandic epilepsy, childhood absence epilepsy and juvenile myoclonic epilepsy. Severe syndromes with diffuse brain dysfunction caused, at least partly, by some aspect of epilepsy, are also referred to as epileptic encephalopathies. These are associated with frequent seizures that are resistant to treatment and severe cognitive dysfunction, for instance Lennox-Gastaut syndrome and West syndrome.

References

  1. (PDF) https://www.ilae.org/files/dmfile/IGEFINALApril2.pdf.{{cite web}}: Missing or empty |title= (help)