Benign familial neonatal epilepsy [1] | |
---|---|
Other names | Benign familial neonatal convulsions |
Specialty | Neurology |
Benign familial neonatal seizures (BFNS), also referred to as benign familial neonatal epilepsy (BFNE), is a rare autosomal dominant inherited form of seizures. This condition manifests in newborns as brief and frequent episodes of tonic-clonic seizures with asymptomatic periods in between. [2] Characteristically, seizure activity spontaneously ends during infancy and does not affect childhood development. [2] [3] However, some studies have reported that a minority of children with BFNS consequently develop intellectual disability. [3] Additionally, BFNS increases lifetime susceptibility to seizures as approximately 14% of those afflicted go on to develop epilepsy later in life. [4] There are three known genetic causes of BFNE, two being the voltage-gated potassium channels KCNQ2 (BFNC1) and KCNQ3 (BFNC2) and the third being a chromosomal inversion (BFNC3). There is no obvious correlation between most of the known mutations and clinical variability seen in BFNE.
BFNS often presents in the first week of life with brief but frequent episodes of tonic-clonic seizures, outside of which a child is completely asymptomatic. [2] [3] [4] During the tonic phase of these seizures, infants may stop breathing (apnea) and consequently appear blue (cyanosis) due to lack of oxygen. Accompanying this is focal or generalized muscle stiffening. [2] [3] [4] The clonic phase usually follows, during which the infant may make noises, display focal or multi-focal rhythmic jerking of the body, and/or display abnormal eye and facial movement. [2] [3] [4] Characteristically, testing for seizures between episodes with EEG is normal. However, the appearance of a “theta pointu alternant pattern” and/or non-specific abnormalities on EEG has been reported in several cases, although their relationship to BFNE has not been well delineated. [2] These seizure episodes resolve entirely within days to weeks, and in most patients have no effects on neurodevelopment. [2] [3] [4] With that said, several studies tracking the health of patients with BFNE into adulthood have reported consequent intellectual disability [3] and seizure disorders. [4]
The most prevalent known cause of BFNE is mutation of KCNQ2, a gene encoding a voltage-gated potassium channel (KV7.2). There are at least 35 such mutations, see Table 1, primarily located in the voltage sensitive S4 segment through the C-terminus. Of these mutations, 5 are nonsense mutations, 13 are missense mutations and 11 cause a frameshift in the coding sequence. There are also 5 splice variants, one of which has been characterized at the protein level and leads to a nonsense mutation. Finally, there is one large deletion that removes much of the carboxy-terminus of the channel.
While most BFNC1 mutations have not been further characterized, 14 have and all seem to lead to functional defects. Two of the mutations in the voltage-sensitive S4 segment, R207W and R214W, do not lead to a decrease in the whole-cell current (M current) produced by KCNQ2 channels but to a change in channel kinetics. The R207W mutation takes fourfold longer and the R214W mutation takes twofold longer to reach maximal current compared to wild-type channels. [5] Since the time-course of an action potential is shorter than the time required for mutant KCNQ2 channels to reach proper levels of inactivation these mutants are expected to lead to neuronal hyperexcitability.
Though many of the other characterized mutations lead to decreased whole-cell current that has not been further delineated, three mutations have. Y534fsX538, for example, leads to a truncation that removes much of the carboxy-terminus of the channel. This mutant has been studied and shown to not traffic properly to the membrane. [6] Two other mutations, P709fs929X and W867fsX931, lead to altered carboxy-termini, though they actually lengthen rather than truncate the protein. These abnormal extended proteins have been shown to be more rapidly degraded within cells and, thus, produce little current. [7]
Mutation | Region | Functional Consequence | References | |
---|---|---|---|---|
Nucleotide | Amino acid | |||
c.232delC | Q78fsX132 | N-Terminus | [8] | |
c.314_316delCCT | S105CfsX872 | S1 | [8] | |
c.387+1G→T | Splicing | S2 | [9] | |
c.584_593del10insA | S195X | S4 | [10] | |
c.C587T+c.T590C | A196V+L197P | S4 | [11] | |
c.C619T | R207W | S4 | Slowed activation | [5] |
c.G622A | M208V | S4 | Current decreased by ~50% | [9] |
c.C641T | R214W | S4 | Slowed activation and increased deactivation | [5] , [12] , [13] |
c.C674G | H228Q | S4-S5 | [9] | |
c.T727C | L243F | S5 | [9] | |
c.C740G | S247W | S5 | No current and dominant negative | [9] |
c.G807A | W269X | Pore | [9] | |
c.848_849insGT | K283fsX329 | Pore | [9] , [14] | |
c.A851G | Y284C | Pore | Current decreased by ~50% | [6] , [9] , [13] , [14] , [15] |
c.G916A | A306T | S6 | Current decreased by ~80% | [6] , [9] , [14] , [15] |
c.C967T | Q323X | C-Terminus | Current reduction by ~50% | [9] |
c.G998A | R333Q | C-Terminus | Current reduction by ~40% | [9] |
c.T1016G | R339L | C-Terminus | [11] | |
c.1118+1G→A | Splicing | C-Terminus | [8] | |
c.Intron 8_3' UTR del | Deletion 382→3' UTR | C-Terminus | [9] , [14] | |
c.1217+2T→G | Splicing | C-Terminus | [16] | |
c.C1342T | R448X | C-Terminus | Current reduction by ~40% | [9] , [11] |
c.1369_1370delAA | K457EfsX458 | C-Terminus | [17] | |
c.1564_1576del | S522fsX524 | C-Terminus | [9] , [14] | |
c.1600_1601insGCCCT | Y534fsX538 | C-Terminus | No current due to no trafficking | [6] , [15] , [18] |
c.1630-1G→A | Splicing | C-Terminus | [9] , [14] | |
c.G1658A | R553Q | C-Terminus | [11] | |
c.G1662T* | K554N | C-Terminus | Decreased voltage sensitivity of activation | [19] |
c.C1741T | R581X | C-Terminus | [9] | |
c.1764-6C→A | Splicing (V589X) | C-Terminus | [20] | |
c.1931delG | S644TfsX901(extX56) | C-Terminus | [21] | |
c.1959del? | T653fsX929(extX56) | C-Terminus | [9] | |
c.2127delT | P709fs929X(extX57) | C-Terminus | No current due to increased degradation | [7] , [22] , [23] |
c.2597delG | G866AfsX929(extX56) | C-Terminus | Current decreased by ~95% due to increased degradation | [7] , [22] , [24] |
c.2599_2600insGGGCC | W867fsX931(extX58) | C-Terminus | Current reduction by ~75% | [9] |
* Misreported (twice in the same article) as G1662A (G1620A in the original numbering), which would not cause an amino acid change. | ||||
N.B. Mutations nucleotide/amino acid positions in terms of transcript variant 1 (NM_172107) available from PubMed. Consequently, some mutation positions differ from those reported in the original literature. |
Shortly after the discovery of mutations in KCNQ2 related to BFNE, a novel voltage-gated potassium channel was found that is highly homologous to KCNQ2 and contains mutations also associated with BFNE. This gene, KCNQ3, contains 3 known mutations associated with BFNE, all within the pore region of the channel. The first of these mutations, G310V, leads to a 50% reduction in whole-cell current compared to cells expressing wild-type channels. [9] [15] [25] The reason for this change is unknown as the mutation does not lead to altered protein trafficking. [6]
A second mutation, W309G, has also been found to be associated with BFNE. This mutation was only found in one family and has not been further characterized. [26]
The final known BFNC2 mutation, D305G is also in the pore region of the channel. This mutation leads to an approximately 40% reduction in whole-cell current compared to wild-type expressing cells. The underlying mechanism for this current decrease has not been further delineated. [9]
The rarest cause of BFNE, occurring in only one known family, is a chromosomal inversion. This occurs on chromosome 5 and the inversion is of the p15 through q11 area. Affected individuals, thus, have the karyotype 46,XY,inv(5)(p15q11). Why this inversion leads to the BFNE phenotype is unknown. [27]
Generally speaking, Neonatal seizures are often controlled with phenobarbital administration. While phenobarbital can be used for symptomatic treatment of BFNC, several studies have shown favorable response to anti-seizure medications that specifically block sodium channels (see article on Sodium channel blocker). [2] However, at this time, phenobarital is the first line therapy for BFNC. [2] Recurrent seizures later in life are treated in the standard ways (covered in the main epilepsy article). Depending on the severity, some infants are sent home with heart and oxygen monitors that are hooked to the child with stick on electrodes to signal any seizure activity. Once a month the monitor readings are downloaded into a central location for the doctor to be able to read at a future date. This monitor is only kept as a safeguard as usually the medication wards off any seizures. Once the child is weaned off the phenobarbital, the monitor is no longer necessary.
BFNE was first described in 1964 by Andreas Rett [28] and named by Bjerre and Corelius four years later. [29] [30] Andreas Rett is better known for his later characterization of Rett syndrome. [23] Both studies were published in German, but have yet to be translated in English. [30] The mutations associated with BFNE were first mapped and descripted by Leppert and colleagues in 1989. [31]
A convulsion is a medical condition where the body muscles contract and relax rapidly and repeatedly, resulting in uncontrolled shaking. Because epileptic seizures typically include convulsions, the term convulsion is often used as a synonym for seizure. However, not all epileptic seizures result in convulsions, and not all convulsions are caused by epileptic seizures. Non-epileptic convulsions have no relation with epilepsy, and are caused by non-epileptic seizures.
Familial hemiplegic migraine (FHM) is an autosomal dominant type of hemiplegic migraine that typically includes weakness of half the body which can last for hours, days, or weeks. It can be accompanied by other symptoms, such as ataxia, coma, and paralysis. Migraine attacks may be provoked by minor head trauma. Some cases of minor head trauma in patients with hemiplegic migraine can develop into delayed cerebral edema, a life-threatening medical emergency. Clinical overlap occurs in some FHM patients with episodic ataxia type 2 and spinocerebellar ataxia type 6, benign familial infantile epilepsy, and alternating hemiplegia of childhood.
Sudden unexpected death in epilepsy (SUDEP) is a fatal complication of epilepsy. It is defined as the sudden and unexpected, non-traumatic and non-drowning death of a person with epilepsy, without a toxicological or anatomical cause of death detected during the post-mortem examination.
Episodic ataxia (EA) is an autosomal dominant disorder characterized by sporadic bouts of ataxia with or without myokymia. There are seven types recognized but the majority are due to two recognized entities. Ataxia can be provoked by psychological stress or startle, or heavy exertion, including exercise. Symptoms can first appear in infancy. There are at least six loci for EA, of which 4 are known genes. Some patients with EA also have migraine or progressive cerebellar degenerative disorders, symptomatic of either familial hemiplegic migraine or spinocerebellar ataxia. Some patients respond to acetazolamide though others do not.
CDKL5 is a gene that provides instructions for making a protein called cyclin-dependent kinase-like 5 also known as serine/threonine kinase 9 (STK9) that is essential for normal brain development. Mutations in the gene can cause deficiencies in the protein. The gene regulates neuronal morphology through cytoplasmic signaling and controlling gene expression. The CDKL5 protein acts as a kinase, which is an enzyme that changes the activity of other proteins by adding a cluster of oxygen and phosphorus atoms at specific positions. Researchers are currently working to determine which proteins are targeted by the CDKL5 protein.
Kv7.2 (KvLQT2) is a voltage- and lipid-gated potassium channel protein coded for by the gene KCNQ2.
Kv7.3 (KvLQT3) is a potassium channel protein coded for by the gene KCNQ3.
Sodium channel protein type 1 subunit alpha (SCN1A), is a protein which in humans is encoded by the SCN1A gene.
Sodium channel protein type 2 subunit alpha, is a protein that in humans is encoded by the SCN2A gene. Functional sodium channels contain an ion conductive alpha subunit and one or more regulatory beta subunits. Sodium channels which contain sodium channel protein type 2 subunit alpha are sometimes called Nav1.2 channels.
Leucine-rich, glioma inactivated 1, also known as LGI1, is a protein which in humans is encoded by the LGI1 gene. It may be a metastasis suppressor.
ATP-sensitive inward rectifier potassium channel 10 is a protein that in humans is encoded by the KCNJ10 gene.
Potassium voltage-gated channel subfamily KQT member 4, also known as voltage-gated potassium channel subunit Kv7.4, is a protein that in humans is encoded by the KCNQ4 gene.
M current is a type of noninactivating potassium current first discovered in bullfrog sympathetic ganglion cells.
In molecular biology, the ankyrin-G binding motif of KCNQ2-3 is a protein motif found in the potassium channels KCNQ2 and KCNQ3.
Benign familial infantile epilepsy (BFIE) is an epilepsy syndrome. Affected children, who have no other health or developmental problems, develop seizures during infancy. These seizures have focal origin within the brain but may then spread to become generalised seizures. The seizures may occur several times a day, often grouped in clusters over one to three days followed by a gap of one to three months. Treatment with anticonvulsant drugs is not necessary but they are often prescribed and are effective at controlling the seizures. This form of epilepsy resolves after one or two years, and appears to be completely benign. The EEG of these children, between seizures, is normal. The brain appears normal on MRI scan.
An epilepsy syndrome is defined as "a characteristic cluster of clinical and Electroencephalography (EEG) features, often supported by specific etiological findings ."
Benign neonatal seizures include two disorders: self-limited (benign) neonatal seizures and self-limited (benign) familial neonatal seizures.
A neonatal seizure is a seizure in a baby younger than age 4-weeks that is identifiable by an electrical recording of the brain. It is an occurrence of abnormal, paroxysmal, and persistent ictal rhythm with an amplitude of 2 microvolts in the electroencephalogram,. These may be manifested in form of stiffening or jerking of limbs or trunk. Sometimes random eye movements, cycling movements of legs, tonic eyeball movements, and lip-smacking movements may be observed. Alteration in heart rate, blood pressure, respiration, salivation, pupillary dilation, and other associated paroxysmal changes in the autonomic nervous system of infants may be caused due to these seizures. Often these changes are observed along with the observance of other clinical symptoms. A neonatal seizure may or may not be epileptic. Some of them may be provoked. Most neonatal seizures are due to secondary causes. With hypoxic ischemic encephalopathy being the most common cause in full term infants and intraventricular hemorrhage as the most common cause in preterm infants.
KCNQ2 encephalopathy typically presents with tonic seizures from the first week of life. The seizures can be frequent and often difficult to treat. Seizures can resolve within months or years but can impair the development of several domains such as motor, social, cognitive and language.
Encukalner also known as XEN1101 is an experimental small molecule anticonvulsant and selective Kv7.2/Kv7.3 potassium channel opener being investigated as a treatment for refractory focal onset seizures and major depressive disorder.