This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
GEFS+ | |
---|---|
Specialty | Neurology |
Generalized epilepsy with febrile seizures plus (GEFS+) is a syndromic autosomal dominant disorder where affected individuals can exhibit numerous epilepsy phenotypes. [1] GEFS+ can persist beyond early childhood (i.e., 6 years of age). GEFS+ is also now believed to encompass three other epilepsy disorders: severe myoclonic epilepsy of infancy (SMEI), which is also known as Dravet's syndrome, borderline SMEI (SMEB), and intractable epilepsy of childhood (IEC). [2] [3] There are at least six types of GEFS+, delineated by their causative gene. Known causative gene mutations are in the sodium channel α subunit genes SCN1A, an associated β subunit SCN1B, and in a GABAA receptor γ subunit gene, in GABRG2 and there is another gene related with calcium channel the PCDH19 which is also known as Epilepsy Female with Mental Retardation. [4] Penetrance for this disorder is estimated at 60%. [5]
Individuals with GEFS+ present with a range of epilepsy phenotypes. These include febrile seizures that end by age 6 (FS), such seizures extending beyond age 6 that may include afebrile tonic-clonic, myoclonic, absence, atonic seizures and myoclonic-astatic epilepsy. Individuals may also present with SMEI, characterized by generally tonic-clonic seizures, impaired psychomotor development, myoclonic seizures, ataxia, and poor response to many anticonvulsants. [1] [6]
GEFS+ type 1 is a subtype of GEFS+ in which there are mutations in SCN1B, a gene encoding a sodium channel β subunit. The β subunit is required for proper channel inactivation. There are two known mutations in SCN1B that lead to GEFS+ (Figure 1). The first and best characterized of these mutations is C121W. This mutation alters a cysteine involved in a disulfide bond in the extracellular N-terminus of the protein. This extracellular region is similar to the cell adhesion molecule contactin and other cell adhesion molecules. It is believed that the disulfide bond disrupted by the C121W mutation is required for the proper folding of this N-terminus motif. Coexpression of SCN1B with sodium channel α subunits in oocytes and other cells results in channels that inactivate more slowly. Expression of C121W mutant along with wild-type α subunits produces current indistinguishable from that through α subunits alone. [5] [7] Further investigation of this mutation has indicated that it results in decreased frequency dependent rundown and, thus, likely hyperexcitability when compared to cells expressing the wild-type subunit. This mutation also disrupts the subunit's ability to induce cellular aggregation. The importance of this last fact is unclear, though it is presumed that proper channel aggregation within cells and cell-cell contact are required for normal neuronal function. [8] [9]
A second mutation has been found in one kindred with GEFS+ type 1. This mutation is in a splice acceptor site of exon 3. The loss of this acceptor site reveals a downstream cryptic acceptor site and a protein missing 5 amino acids in the N-terminus (I70_E74del). This mutation has not been further characterized. [10]
A second subtype of GEFS+, type 2, is the result of mutations in SCN1A, a gene encoding a sodium channel α subunit. There are currently almost 90 known mutations in the SCN1A gene throughout the entirety of the channel (see table 1). These mutations result in almost any imaginable mutation type in the gene, short of duplications. The results of these mutations are highly variable, some producing functional channels while others result in non-functional channels. Some functional channels result in membrane hyperexcitability while others result in hypoexcitability. Most of the functional mutant channels result in hyperexcitability due to decreased frequency dependent rundown. An example of this is the D188V mutation. A 10 Hz stimulation of wild-type channels causes current to decrease to approximately 70% of maximum whereas the same stimulation of mutant channels results in rundown to 90% of maximum. This is caused by an expedited recovery from inactivation for mutant channels versus wild-type. The D188V mutant, for example, recovers to 90% maximal current in 200ms while wild-type channels are unable to recover to this degree in >1000ms. [11] Some other functional mutations that lead to hyperexcitability do so by other means, such as decreasing the rate of entrance into the slow inactivated state. [12]
Some of the other functional mutations are believed to result in hypoexcitability. The R859C mutation, for example, has a more depolarized voltage dependence of activation, meaning that the membrane must be more depolarized for the channel to open. This mutant also recovers more slowly from inactivation. [13] The nonfunctional channels are believed to produce similar changes in cell excitability. Likewise, many of the nonsense mutations likely result in nonfunctional channels and hypoexcitability, though this has yet to be tested. It is also unclear how this membrane hypoexcitability leads to the GEFS+ phenotype.[ citation needed ]
Mutation | Region | Functional? | Excitability Prediction | References |
---|---|---|---|---|
R101Q | N-Terminus | [14] | ||
S103G | N-Terminus | [15] | ||
T112I | N-Terminus | [15] | ||
V144fsX148 | D1S1 | [14] | ||
G177fsX180 | D1S2-S3 | [15] | ||
D188V | D1S2-S3 | Yes | Hyperexcitable | [11] [16] |
F190R | D1S3 | [14] | ||
S219fsX275 | D1S4 | [17] | ||
R222X | D1S4 | [14] [17] | ||
G265W | D1S5 | [15] | ||
G343E | D1S5-S6 | [15] | ||
E435X | D1-2 | [14] | ||
R613X | D1-2 | [18] | ||
R701X | D1-2 | [14] | ||
P707fsX715 | D1-2 | [18] | ||
R712X | D1-2 | [15] | ||
Q732fsX749 | D1-2 | [15] | ||
Y779C | D2S1 | [19] | ||
T808S | D2S2 | Yes | Hyperexcitable | [6] [15] |
R859C | D2S4 | Yes | Hypoexcitability | [13] |
T875M | D2S4 | Yes | Hyperexcitable* | [20] [21] [22] [23] [24] |
F902C | D2S5 | No | Hypoexcitable | [25] |
S914fsX934 | D2S5-6 | [18] | ||
M924I | D2S5-6 | [14] | ||
V934A | D2S5-6 | [14] | ||
R936C | D2S5-6 | [14] | ||
R936H | D2S5-6 | [14] | ||
W942X | D2S5-6 | [14] | ||
R946fsX953 | D2S5-6 | [15] | ||
W952X | D2S5-6 | [15] | ||
D958fsX973 | D2S5-6 | [15] | ||
M960V | D2S5-6 | [15] | ||
G979R | D2S6 | No | Hypoexcitable | [6] [15] |
V983A | D2S6 | Yes | Hyperexcitable | [6] [15] |
N985I | D2S6 | [15] | ||
L986F | D2S6 | No | Hypoexcitable | [17] [26] |
N1011I | D2-3 | Yes | Hyperexcitable | [6] [15] |
K1100fsX1107 | D2-3 | [17] | ||
L1156fsX1172 | D2-3 | [14] | ||
W1204R | D2-3 | Yes | Hyperexcitable | [2] [24] [27] |
W1204X | D2-3 | [15] | ||
R1213X | D2-3 | [15] | ||
S1231R | D3S1 | [15] | ||
S1231T | D3S1 | [18] | ||
F1263L | D3S2 | [15] | ||
W1284X | D3S3 | [15] | ||
L1345P | D3S5 | [14] | ||
V1353L | D3S5 | No | Hypoexcitable | [16] [26] |
Splice | Exon 4 | [15] [17] | ||
R1397X | D3S5-6 | [14] | ||
R1407X | D3S5-6 | [15] | ||
W1408X | D3S5-6 | [15] | ||
V1428A | D3S6 | [28] [29] | ||
S1516X | D3-4 | [15] | ||
R1525X | D3-4 | [18] | ||
M1549del | D4S1 | [14] | ||
V1611F | D4S3 | Yes | Hyperexcitable | [6] [15] |
P1632S | D4S3 | Yes | Hyperexcitable | [6] [15] |
R1635X | D4S4 | [14] | ||
R1648C | D4S4 | Yes | Hyperexcitable | [25] |
R1648H | D4S4 | Yes | Hyperexcitable | [21] [23] [24] [30] [31] |
I1656M | D4S4 | Yes | [16] [26] | |
R1657C | D4S4 | Yes | Hypoexcitable | [26] [31] [32] |
F1661S | D4S4 | Yes | Hyperexcitable | [25] |
L1670fsX1678 | D4S4-5 | [15] [17] | ||
G1674R | D4S4-5 | No | Hypoexcitable | [25] |
F1682S | D4S5 | [14] | ||
Y1684C | D4S5 | [14] | ||
A1685V | D4S5 | No | Hypoexcitable | [26] [28] [29] |
A1685D | D4S5 | [15] | ||
T1709I | D4S5-6 | No | Hypoexcitable | [6] [15] |
D1742G | D4S5-6 | [33] | ||
G1749E | D4S6 | Yes | Hypoexcitable | [25] |
F1756del | D4S6 | [14] | ||
F1765fsX1794 | D4S6 | [15] | ||
Y1771C | D4S6 | [14] | ||
1807delMFYE | C-Terminus | [15] | ||
F1808L | C-Terminus | Yes | Hyperexcitable | [6] [15] |
W1812G | C-Terminus | [15] | ||
F1831S | C-Terminus | [15] | ||
M1841T | C-Terminus | [19] | ||
S1846fsX1856 | C-Terminus | [17] [18] | ||
R1882X | C-Terminus | [14] | ||
D1886Y | C-Terminus | Yes | Hyperexcitable | [34] |
R1892X | C-Terminus | [15] | ||
R1902X | C-Terminus | [14] | ||
Q1904fsX1945 | C-Terminus | [15] | ||
* | Results are dependent on experimental paradigm |
Patients with GEFS+ type 3 have mutations in the GABRG2 gene, which encodes the GABAA γ2 subunit (figure 2). The first mutation discovered in GABRG2 was K289M, in the extracellular region linking membrane-spanning domains M2 and M3. Oocytes injected with α1, β2, and γ2 subunits produce large GABA inducible currents whereas those injected with K289M mutant instead of wild-type subunits produce currents much smaller (about 10% of wild-type). This abnormal current is not the result of non-incorporation of mutant subunits since mutant containing receptors are still sensitive to benzodiazepines, a property for which functional γ subunits are required. Because of these results, it is believed that the GEFS+ phenotype in these individuals is a result of hyperexcitability. [35]
Concurrent with the previous mutation, a second group found a second mutation in GABRG2 associated with GEFS+. This mutation, R43Q, is located in the one of two benzodiazepine binding-sites located in the extracellular N-terminus. Benzodiazepines, such as Diazepam, potentiate GABA induced current. This potentiation is abolished in cells expressing the R43Q mutant subunit instead of the wild-type γ subunit. This mutation does not affect the subunit's ability to coassemble into function receptors as it still confers resistance to GABA current blockade by zinc. As with the previous mutation, this mutation is expected to result in neuronal hyperexcitability. [36] [37]
The final known GEFS+ type 3 mutation is a nonsense mutation, Q351X, located in the intracellular region linking the third and fourth membrane spanning segments. When this mutant subunit is expressed in cells with wild-type α and β subunits it produces non-functional receptors. Since wild-type α and β subunits expressed alone are able to produce GABA inducible current this indicates that the mutation either prevents both coassembly of the mutant and wild-type subunits but also coassembly of the wild-type α and β subunits or prevents proper trafficking of the formed receptor to the membrane. Fusion of GFP onto this mutated subunit has indicated that it is localized to the endoplasmic reticulum instead of the cell membrane. As with other known GEFS+ type 3 mutation, Q351X likely results in neuronal hyperexcitability. [38]
The final type of GEFS+ is caused by mutations in the SCN2A gene, which encodes a sodium channel α subunit. The first associated mutation in this gene is R187W, located on the intracellular region linking membrane spanning units two and three in the first domain (D1S2-S3, figure 3). Patients with this mutation have both febrile and afebrile seizures. Electrophysiological examination of this mutant revealed that it increases the time constant for inactivation, presumably increasing sodium current and leading to hyperexcitability. However, this mutation also yields channels that inactivate at more hyperpolarized potentials relative to wild-type channels, indicative of hypoexcitability. Whether the result on membrane excitability of this mutation is hyperexcitability or hypoexcitability is, as yet, unclear. [29] [39]
The second known mutation in SCN2A associated with GEFS+ is R102X. This mutation is located in the intracellular N-terminus (figure 3) and results in SMEI in patients. The result of this mutation is completely non-functional channels and membrane hypoexcitability. The truncated mutant protein also seems to cause wild-type channels to inactivate at more hyperpolarized potentials, indicating that it also acts in a dominant negative manner. [40]
Long term management is by use of anticonvulsant medication, principally valproate, stiripentol, topiramate or clobazam. [41] Ketogenic diet has also been found useful in certain cases [42]
Management of breakthrough seizures is by benzodiazepine such as midazolam.[ citation needed ]
Absence seizures are one of several kinds of generalized seizures. In the past, absence epilepsy was referred to as "pyknolepsy," a term derived from the Greek word "pyknos," signifying "extremely frequent" or "grouped".These seizures are sometimes referred to as petit mal seizures ; however, usage of this terminology is no longer recommended. Absence seizures are characterized by a brief loss and return of consciousness, generally not followed by a period of lethargy. Absence seizures are most common in children. They affect both sides of the brain.
Sodium channels are integral membrane proteins that form ion channels, conducting sodium ions (Na+) through a cell's membrane. They belong to the superfamily of cation channels.
Familial hemiplegic migraine (FHM) is an autosomal dominant type of hemiplegic migraine that typically includes weakness of half the body which can last for hours, days, or weeks. It can be accompanied by other symptoms, such as ataxia, coma, and paralysis. Migraine attacks may be provoked by minor head trauma. Some cases of minor head trauma in patients with hemiplegic migraine can develop into delayed cerebral edema, a life-threatening medical emergency. Clinical overlap occurs in some FHM patients with episodic ataxia type 2 and spinocerebellar ataxia type 6, benign familial infantile epilepsy, and alternating hemiplegia of childhood.
Dravet syndrome (DS), previously known as severe myoclonic epilepsy of infancy (SMEI), is an autosomal dominant genetic disorder which causes a catastrophic form of epilepsy, with prolonged seizures that are often triggered by hot temperatures or fever. It is very difficult to treat with anticonvulsant medications. It often begins before one year of age, with six months being the age that seizures, characterized by prolonged convulsions and triggered by fever, usually begin.
Childhood absence epilepsy (CAE), formerly known as pyknolepsy, is an idiopathic generalized epilepsy which occurs in otherwise normal children. The age of onset is between 4–10 years with peak age between 5–7 years. Children have absence seizures which although brief, they occur frequently, sometimes in the hundreds per day. The absence seizures of CAE involve abrupt and severe impairment of consciousness. Mild automatisms are frequent, but major motor involvement early in the course excludes this diagnosis. The EEG demonstrates characteristic "typical 3Hz spike-wave" discharges. The presence of any other seizure type at time of diagnosis rules out the diagnose of CAE. Prognosis is usually good in well-defined cases of CAE with most patients "growing out" of their epilepsy.
Benign familial neonatal seizures (BFNS), formerly called benign familial neonatal convulsions (BFNC), is a rare autosomal dominant inherited form of seizures. It manifests in newborns, normally within the first 7 days of life, as tonic–clonic seizures. Infants are otherwise normal between attacks and develop without incident. Attacks normally spontaneously cease within the first 15 weeks of life. Lifetime susceptibility to seizures is increased, as 16% of those diagnosed with BFNE earlier in life will go on to have seizures versus a 2% lifetime risk for the general population. There are three known genetic causes of BFNE, two being the voltage-gated potassium channels KCNQ2 (BFNC1) and KCNQ3 (BFNC2) and the third being a chromosomal inversion (BFNC3). There is no obvious correlation between most of the known mutations and clinical variability seen in BFNE.
Idiopathic generalized epilepsy (IGE) is a group of epileptic disorders that are believed to have a strong underlying genetic basis. IGE is considered a subgroup of Genetic Generalized Epilepsy (GGE). Patients with an IGE subtype are typically otherwise normal and have no structural brain abnormalities. People also often have a family history of epilepsy and seem to have a genetically predisposed risk of seizures. IGE tends to manifest itself between early childhood and adolescence although it can be eventually diagnosed later. The genetic cause of some IGE types is known, though inheritance does not always follow a simple monogenic mechanism.
Juvenile myoclonic epilepsy (JME), also known as Janz syndrome or impulsive petit mal, is a form of hereditary, idiopathic generalized epilepsy, representing 5–10% of all epilepsy cases. Typically it first presents between the ages of 12 and 18 with myoclonic seizures. These events typically occur after awakening from sleep, during the evening or when sleep-deprived. JME is also characterized by generalized tonic–clonic seizures, and a minority of patients have absence seizures. It was first described by Théodore Herpin in 1857. Understanding of the genetics of JME has been rapidly evolving since the 1990s, and over 20 chromosomal loci and multiple genes have been identified. Given the genetic and clinical heterogeneity of JME some authors have suggested that it should be thought of as a spectrum disorder.
Autosomal dominant nocturnal frontal lobe epilepsy is an epileptic disorder that causes frequent violent seizures during sleep. These seizures often involve complex motor movements, such as hand clenching, arm raising/lowering, and knee bending. Vocalizations such as shouting, moaning, or crying are also common. ADNFLE is often misdiagnosed as nightmares. Attacks often occur in clusters and typically first manifest in childhood. There are four known loci for ADNFLE, three with known causative genes. These genes, CHRNA4, CHRNB2, and CHRNA2, encode various nicotinic acetylcholine receptor α and β subunits.
Episodic ataxia (EA) is an autosomal dominant disorder characterized by sporadic bouts of ataxia with or without myokymia. There are seven types recognized but the majority are due to two recognized entities. Ataxia can be provoked by psychological stress or startle, or heavy exertion, including exercise. Symptoms can first appear in infancy. There are at least six loci for EA, of which 4 are known genes. Some patients with EA also have migraine or progressive cerebellar degenerative disorders, symptomatic of either familial hemiplegic migraine or spinocerebellar ataxia. Some patients respond to acetazolamide though others do not.
Paralytic is a gene in the fruit fly, Drosophila melanogaster, which encodes a voltage gated sodium channel within D. melanogaster neurons. This gene is essential for locomotive activity in the fly. There are 9 different para alleles, composed of a minimum of 26 exons within over 78kb of genomic DNA. The para gene undergoes alternative splicing to produce subtypes of the channel protein. Flies with mutant forms of paralytic are used in fly models of seizures, since seizures can be easily induced in these flies.
Gamma-aminobutyric acid receptor subunit gamma-2 is a protein that in humans is encoded by the GABRG2 gene.
Sodium channel protein type 1 subunit alpha (SCN1A), is a protein which in humans is encoded by the SCN1A gene.
Sodium channel protein type 2 subunit alpha, is a protein that in humans is encoded by the SCN2A gene. Functional sodium channels contain an ion conductive alpha subunit and one or more regulatory beta subunits. Sodium channels which contain sodium channel protein type 2 subunit alpha are sometimes called Nav1.2 channels.
Voltage-dependent L-type calcium channel subunit beta-4 is a protein that in humans is encoded by the CACNB4 gene.
Sodium channel subunit beta-1 is a protein that in humans is encoded by the SCN1B gene.
Sodium channel, voltage-gated, type III, alpha subunit (SCN3A) is a protein that in humans is encoded by the SCN3A gene.
Calcium channel, voltage-dependent, T type, alpha 1H subunit, also known as CACNA1H, is a protein which in humans is encoded by the CACNA1H gene.
Epilepsy-intellectual disability in females also known as PCDH19 gene-related epilepsy or epileptic encephalopathy, early infantile, 9 (EIEE9), is a rare type of epilepsy that affects predominately females and is characterized by clusters of brief seizures, which start in infancy or early childhood, and is occasionally accompanied by varying degrees of cognitive impairment. The striking pattern of onset seizures at a young age, genetic testing and laboratory results, potential developmental delays or developmental regression and associated disorders, eases diagnosis.
People with epilepsy may be classified into different syndromes based on specific clinical features. These features include the age at which seizures begin, the seizure types, and EEG findings, among others. Identifying an epilepsy syndrome is useful as it helps determine the underlying causes as well as deciding what anti-seizure medication should be tried. Epilepsy syndromes are more commonly diagnosed in infants and children. Some examples of epilepsy syndromes include benign rolandic epilepsy, childhood absence epilepsy and juvenile myoclonic epilepsy. Severe syndromes with diffuse brain dysfunction caused, at least partly, by some aspect of epilepsy, are also referred to as epileptic encephalopathies. These are associated with frequent seizures that are resistant to treatment and severe cognitive dysfunction, for instance Lennox-Gastaut syndrome and West syndrome.