Igor Meglinski

Last updated

Igor Meglinski
Igor Meglinski.jpg
Igor Meglinski in April 2015
BornApril 3, 1968 (1968-04-03) (age 56)
Citizenship United Kingdom
Alma mater
Known for
Awards
Scientific career
Fields Medical optical imaging, Diffusing-wave spectroscopy, Dynamic light scattering, Monte Carlo method for photon transport, Coherent backscattering, Orbital angular momentum of light, Optical vortex
Institutions Aston University
Doctoral advisors Britton Chance and Valery Tuchin
Other academic advisors Arjun Yodh

Igor Meglinski is a British, New Zealand and Finnish scientist serving as a principal investigator at the College of Engineering & Physical Sciences at Aston University, where he is a Professor in Quantum Biophotonics and Biomedical Engineering. He is a Faculty member in the School of Engineering and Technology at the Department of Mechanical, Biomedical & Design Engineering, and is also associated with the Aston Institute of Photonic Technologies (AIPT) and Aston Research Centre for Health in Ageing (ARCHA).

Contents

Background and Education

Meglinski obtained his BSc/MSc in Laser Physics from Saratov State University. In 1994, he became the first inaugural recipient of the 'Presidential Boris Yeltsin Award,' the most prestigious award for young scientists in the Russian Federation, supporting overseas study. This accolade facilitated his pursuit of a PhD degree in 1997, which he completed at the interface between Saratov State University and the University of Pennsylvania under the supervision of Professor Britton Chance, Professor Arjun Yodh, and Professor Valery V. Tuchin. His master's research involved the development of one of the earliest versions of the Monte Carlo method for simulating the propagation of laser radiation in tissue-like highly scattering environment, including the consideration of 3D macroinhomogeneities. [1] In the PhD studies he contributed to the invention and early development of Diffusing-wave spectroscopy (DWS) and its pioneering application for non-invasive monitoring of blood flow and superficial blood microcirculation in vivo. [2]

Research

After a few years of postdoctoral research at the School of Physics at the University of Exeter, Igor Meglinski joined Cranfield University in 2001 as a Lecturer and Director of the Biomedical Optical Diagnostics Laboratory within the School of Engineering. In 2007, he became the Head of Bio-Photonics & Bio-Medical Optical Diagnostics in the School of Health at Cranfield University. His research has primarily focused on a quantitative assessment of transdermal penetration of pharmaceutical and skin care product, and skin tissues chromophores and pigmentation by optical and near-infrared spectroscopy (NIR). He developed computational model of human skin for reflected spectra simulation,. [3] [4] He also made significant contributions to the development of Optical Coherence Tomography (OCT), particularly in its application for skin and skin tissue diagnosis. [5] Additionally, he has conducted studies applying the Monte Carlo method for simulating coherent effects in multiple scattering. [6] He was involved in the invention of an optical method designed for analysis and monitoring. [7] This method can be applied to detect and monitor various changes in physico-chemical parameters, concentrations of analytes, and chemical and biological processes. [8]

Since 2009, while at the University of Otago (New Zealand), Prof. Meglinski's research has expanded to include the development of a medical device combining multispectral optoacoustic tomography and ultrasound-modulated optical tomography. [9] This innovative device is designed to provide clear, accurate images of tissue, with the ultimate goal of enabling cancer cell analysis at much earlier stages than currently possible with existing technology, and at a significantly reduced cost. As a Node leader in the World Consortium Biophotonics4Life (BP4L), representing New Zealand on the global stage of biophotonics-based research, Prof. Meglinski actively engages in the exploration of the fundamental properties of light and ultrasound in cancer diagnostics, collaborating with clinicians at the University of Otago Dunedin School of Medicine, [10] [11] and with leading international scientists, [12] while also being involved in the investigation of brain activity. [13] He pioneered the application of circularly polarized light to distinguish between successive grades of cancer. [14] This work demonstrated that the phase shift of polarized light backscattered from biological tissue samples carries important information about the presence of cervical intraepithelial neoplasia. In addition, in collaboration with his colleague, he developed a cloud-based online computational toolbox for the Biophotonics and Biomedical Optics scientific community,. [15] [16] Nowadays, this toolbox is hosted at www.biophotonics.fi and is used extensively by a global audience of over 7500 users, including PhD students and young researchers.

In 2014, Meglinski returned back to Europe, heading the Department of Opto-Electronic and Measurement Techniques at the Faculty of Information Technology and Electrical Engineering (ITEE) at the University of Oulu in Finland. Utilizing advanced photonics-based technologies, emerging paradigms in machine learning, and new concepts in computational modeling of light-tissue interaction, Prof. Meglinski and his team at the University of Oulu developed 'Polarization Sensitive Optical Biopsy'. [17] This technique facilitates advanced diagnosis in cell cultures and screening of tissue samples, incorporating definitive pathology methods.Additionally, Prof. Meglinski and his team developed an Optical Tweezers (OT) based technology to investigate the impact of various nanoparticles on the mutual interaction of red blood cells. [18] [19] This research demonstrates the potential of OT in studying targeted drug delivery systems, providing crucial insights into how nanoparticles can influence red blood cell behavior — a key factor in the development of effective and efficient drug delivery carriers. [20]

Since 2019 he is Professor in Quantum Biophotonics & Biomedical Engineering in Aston University, working at the interface between College of Engineering & Physical Sciences and College of Life & Health Sciences. His research focuses on quantum biophotonics and biomedical engineering, where he has pioneered the application of Orbital angular momentum of light (OAM) for the quantification of exosomes and the exploration of intracellular communication. [21] Continuing his research and development of Dynamic light scattering based imaging of blood flow, [22] he is exploring hemodynamic patterns in postmortem mice brains. [23] In addition, he discovered more accurate way of checking blood flow in the feet of type 2 diabetes patients, [24] [25] [26] and pioneered using art to bridge the gap between complex scientific findings and the public. [27] [28]

Publications

Professor Meglinski is author and co-author of over 450 scientific publications. [29] His h-index is 51. [30]

Honours, awards and professional recognition

Related Research Articles

The term biophotonics denotes a combination of biology and photonics, with photonics being the science and technology of generation, manipulation, and detection of photons, quantum units of light. Photonics is related to electronics and photons. Photons play a central role in information technologies, such as fiber optics, the way electrons do in electronics.

SPIE is an international not-for-profit professional society for optics and photonics technology, founded in 1955. It organizes technical conferences, trade exhibitions, and continuing education programs for researchers and developers in the light-based fields of physics, including: optics, photonics, and imaging engineering. The society publishes peer-reviewed scientific journals, conference proceedings, monographs, tutorial texts, field guides, and reference volumes in print and online. SPIE is especially well-known for Photonics West, one of the laser and photonics industry's largest combined conferences and tradeshows which is held annually in San Francisco. SPIE also participates as partners in leading educational initiatives, and in 2020, for example, provided more than $5.8 million in support of optics education and outreach programs around the world.

<span class="mw-page-title-main">Optical tomography</span>

Optical tomography is a form of computed tomography that creates a digital volumetric model of an object by reconstructing images made from light transmitted and scattered through an object. Optical tomography is used mostly in medical imaging research. Optical tomography in industry is used as a sensor of thickness and internal structure of semiconductors.

<span class="mw-page-title-main">Bruce J. Tromberg</span> American chemist

Bruce J. Tromberg is an American photochemist and a leading researcher in the field of biophotonics. He is the director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) within the National Institutes of Health (NIH). Before joining NIH, he was Professor of Biomedical Engineering at The Henry Samueli School of Engineering and of Surgery at the School of Medicine, University of California, Irvine. He was the principal investigator of the Laser Microbeam and Medical Program (LAMMP), and the Director of the Beckman Laser Institute and Medical Clinic at Irvine. He was a co-leader of the Onco-imaging and Biotechnology Program of the NCI Chao Family Comprehensive Cancer Center at Irvine.

<span class="mw-page-title-main">Monte Carlo method for photon transport</span>

Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs. This is equivalent to modeling photon transport analytically by the radiative transfer equation (RTE), which describes the motion of photons using a differential equation. However, closed-form solutions of the RTE are often not possible; for some geometries, the diffusion approximation can be used to simplify the RTE, although this, in turn, introduces many inaccuracies, especially near sources and boundaries. In contrast, Monte Carlo simulations can be made arbitrarily accurate by increasing the number of photons traced. For example, see the movie, where a Monte Carlo simulation of a pencil beam incident on a semi-infinite medium models both the initial ballistic photon flow and the later diffuse propagation.

Robert Alfano is an Italian-American experimental physicist. He is a Distinguished Professor of Science and Engineering at the City College and the Graduate School of the City University of New York, where he is also the founding director of the Institute for Ultrafast Spectroscopy and Lasers (1982). He is a pioneer in the fields of Biomedical Imaging and Spectroscopy, Ultrafast lasers and optics, tunable lasers, semiconductor materials and devices, optical materials, biophysics, nonlinear optics and photonics; he has also worked extensively in nanotechnology and coherent backscattering. His discovery of the white-light supercontinuum laser is at the root of optical coherence tomography, which is breaking barriers in ophthalmology, cardiology, and oral cancer detection among other applications. He initiated the field known now as Optical Biopsy

<span class="mw-page-title-main">Andreas Mandelis</span> Physicist (b. 1952)

Andreas Mandelis is a professor and researcher at the department of Mechanical and Industrial Engineering at the University of Toronto and director of the Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT). He is an internationally recognized expert in thermophotonics. His research encompasses the non-destructive evaluation of materials with industrial and biomedical applications. He is considered a pioneer in the fields of diffusion-wave, photothermal and photoacoustic sciences and related technologies. He is the inventor of a photothermal imaging radar which can detect tooth decay at an early stage.

The Beckman Laser Institute is an interdisciplinary research center for the development of optical technologies and their use in biology and medicine. Located on the campus of the University of California, Irvine in Irvine, California, an independent nonprofit corporation was created in 1982, under the leadership of Michael W. Berns, and the actual facility opened on June 4, 1986. It is one of a number of institutions focused on translational research, connecting research and medical applications. Researchers at the institute have developed laser techniques for the manipulation of structures within a living cell, and applied them medically in treatment of skin conditions, stroke, and cancer, among others.

Lihong V. Wang is the Bren Professor of Medical Engineering and Electrical Engineering at the Andrew and Peggy Cherng Department of Medical Engineering at California Institute of Technology and was formerly the Gene K. Beare Distinguished Professorship of Biomedical Engineering at Washington University in St. Louis. Wang is known for his contributions to the field of Photoacoustic imaging technologies. Wang was elected as the member of National Academy of Engineering (NAE) in 2018.

<span class="mw-page-title-main">Stephen Boppart</span> American bioengineer and academic

Stephen A. Boppart is a principal investigator at the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign, where he holds an Abel Bliss Professorship in engineering. He is a faculty member in the departments of electrical and computer engineering, bioengineering, and internal medicine. His research focus is biophotonics, where he has pioneered new optical imaging technologies in the fields of optical coherence tomography, multi-photon microscopy, and computational imaging.

Elizabeth M. C. Hillman is a British-born academic who is Professor of Biomedical Engineering and Radiology at Columbia University. She was awarded the 2011 Adolph Lomb Medal from The Optical Society and the 2018 SPIE Biophotonics Technology Innovator Award.

<span class="mw-page-title-main">Andrea Armani</span> American chemical engineer

Andrea Martin Armani is the Ray Irani Chair in Engineering and Materials Science and professor of chemical engineering and materials science at the USC Viterbi School of Engineering. She was awarded the 2010 Presidential Early Career Award for Scientists and Engineers from Barack Obama and is a World Economic Forum Young Global Leader.

<span class="mw-page-title-main">Anita Mahadevan-Jansen</span> Biomedical engineer

Anita Mahadevan-Jansen is a Professor of Biomedical Engineering and holds the Orrin H. Ingram Chair in Biomedical Engineering at Vanderbilt University. Her research considers the development of optical techniques for clinical diagnosis and surgical guidance, particularly using Raman and fluorescence spectroscopy. She serves on the Board of Directors of SPIE, and is a Fellow of SPIE, The Optical Society, Society for Applied Spectroscopy, and the American Society for Lasers in Medicine and Surgery. She was elected to serve as the 2020 Vice President of SPIE. With her election, Mahadevan-Jansen joined the SPIE presidential chain and served as President-Elect in 2021 and the Society's President in 2022.

Speckle variance optical coherence tomography (SV-OCT) is an imaging algorithm for functional optical imaging. Optical coherence tomography is an imaging modality that uses low-coherence interferometry to obtain high resolution, depth-resolved volumetric images. OCT can be used to capture functional images of blood flow, a technique known as optical coherence tomography angiography (OCT-A). SV-OCT is one method for OCT-A that uses the variance of consecutively acquired images to detect flow at the micron scale. SV-OCT can be used to measure the microvasculature of tissue. In particular, it is useful in ophthalmology for visualizing blood flow in retinal and choroidal regions of the eye, which can provide information on the pathophysiology of diseases.

Stefan Andersson-Engels is a Swedish biophysicist specializing in the field of biophotonics. He is professor at University College Cork and the deputy director of the Irish Photonics Integration Center (IPIC) within the Science Foundation Ireland. Before joining University College Cork, he was Professor of Biomedical Engineering at Lund University. He has co-founded 3 biophotonics companies Spectracure, Lumito, BioPixS. He also co-founded biannual biophotonics summer school.

Irene Georgakoudi is a Greek biophysicist and Professor of Biomedical Engineering at Tufts University, where her work focuses on developing non-invasive medical imaging techniques based on optical spectroscopy for applications in medical diagnostics and therapeutics.

Katarina Svanberg is a Swedish physician who is Professor and Chief Consultant of Oncology at the Skåne University Hospital. Her research considers the use of fluorescence-based tumour imaging and photodynamic therapy. She served as President of SPIE in 2011 and was awarded the SPIE Gold Medal in 2017.

<span class="mw-page-title-main">Jürgen Czarske</span> German electrical engineer

Jürgen W. Czarske is a German electrical engineer and a measurement system technician. He is the director of the TU Dresden Biomedical Computational Laser Systems competence center and a co-opted professor of physics.

Gabriel Popescu was an American optical engineer, who was the William L. Everitt Distinguished Professor in Electrical and Computer Engineering at University of Illinois Urbana-Champaign. He was best known for his work on biomedical optics and quantitative phase-contrast microscopy.

<span class="mw-page-title-main">Ji-Xin Cheng</span> Academic, inventor, and entrepreneur

Ji-Xin Cheng is an academic, inventor, and entrepreneur. He holds the Moustakas Chair Professorship in Optoelectronics and Photonics at Boston University. His inventions span optical imaging, cancer diagnosis, neuromodulation, and phototherapy of infectious diseases. He holds positions of co-founder of Vibronic and of Pulsethera. He is also the scientific advisor of Photothermal Spectroscopy and Axorus.

References

  1. Meglinski, Igor (1992). "Calculation of radiation intensity within biotissue with macroinhomogeneities using a Monte Carlo method". Proc SPIE. 1981: 234–239. doi:10.1117/12.146473.
  2. Meglinski, Igor; Boas, David; Yodh, Arjun; Chance, Britton (1996). "In vivo Measuring of Blood Flow Changes using Diffusing Wave Correlation Techniques". OSA Trends in Optics and Photonics Series. 3: CM2. doi:10.1364/BOSD.1996.CM2. ISBN   1-55752-427-0.
  3. Meglinski, Igor; Matcher, Stephen (2002). "Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions". Physiological Measurement. 23 (4): 741. doi:10.1088/0967-3334/23/4/312. PMID   12450273.
  4. Meglinski, Igor; Matcher, Stephen (2003). "Computer simulation of the skin reflectance spectra". Computer Methods and Programs in Biomedicine. 70 (2): 179–186. doi:10.1016/S0169-2607(02)00099-8. PMID   12507793.
  5. Proscurin, Sergei; Meglinski, Igor (2007). "Optical coherence tomography imaging depth enhancement by superficial skin optical clearing". Laser Physics Letters. 4 (11): 824–826. Bibcode:2007LaPhL...4..824P. doi:10.1002/lapl.200710056. S2CID   119375085.
  6. Meglinski, Igor; Kuzmin, Vladimir; Churmakov, Dmitry; Greenhalgh, Douglas (2005). "Monte Carlo simulation of coherent effects in multiple scattering". Proceedings of the Royal Society A. 461 (2053): 43–53. Bibcode:2005RSPSA.461...43M. doi:10.1098/rspa.2004.1369. hdl:1826/896. S2CID   53600398.
  7. US 20100304421, S.A. Piletsky, I. Meglinski, E. Moczko, "OPTICAL MONITORING METHOD", published 2010-12-02, field 2008-11-06
  8. Moczko, Ewa; Meglinski, Igor; Bessant, Conrad; Piletsky, Sergey (2009). "Dyes Assay for Measuring Physicochemical Parameters". Analytical Chemistry. 81 (6): 2311–2316. doi:10.1021/ac802482h. PMID   19220044.
  9. An excerpt from He Kitenga Horizons, a University of Otago publication (December 2013)
  10. Centre for Translational Cancer Research
  11. Grant allows cancer research
  12. Dr Chen, of the University of Central Oklahoma, in the United States
  13. Biophotonics potential, University of Otago MAGAZINE, February 2010, page 31
  14. Kunnen, Britt; Macdonald, Callum; Doronin, Alexander; Jacques, Steven; Meglinski, Igor (2015). "Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media". Journal of Biophotonics. 8 (4): 317–323. doi:10.1002/jbio.201400104. PMID   25328034.
  15. Doronin, Alexander; Meglinski, Igor (2011). "Online Monte Carlo for biomedical optics". SPIE Newsroom. doi:10.1117/2.1201110.003879.
  16. Doronin, Alexander; Meglinski, Igor (2011). "Online object oriented Monte Carlo computational tool for the needs of biomedical optics". Biomedical Optics Express. 2 (9): 2461–2469. doi:10.1364/BOE.2.002461. PMC   3184856 . PMID   21991540.
  17. Finnish Biobanks and Biomedical Research News: Polarization Sensitive Optical Biopsy with Diffusely Reflected Light
  18. Researchers experiment with tools to 'maneuver' medicine-carrying red blood cells, Science X, Phys.org
  19. Avsievich, Tatiana; Popov, Alexey; Bykov, Alexander; Meglinski, Igor (2019). "Mutual interaction of red blood cells influenced by nanoparticles". Scientific Reports. 9 (1): 5147. Bibcode:2019NatSR...9.5147A. doi:10.1038/s41598-019-41643-x. PMC   6435805 . PMID   30914741.
  20. Zhu, Ruixue; Avsievich, Tatiana; Popov, Alexey; Bykov, Alexander; Meglinski, Igor (2021). "In vivo nano-biosensing element of red blood cell-mediated delivery". Biosensors & Bioelectronics. 175: 112845. doi:10.1016/j.bios.2020.112845. PMID   33262059.
  21. Orbital Angular Momentum of Light for Exosomes Quantification and Intracellular Communication, Interdisciplinary APEX Awards (2021)
  22. Sdobnov, Anton; Piavchenko, Gennadii; Bykov, Alexander; Meglinski, Igor (2024). "Advances in Dynamic Light Scattering Imaging of Blood Flow". Lasers & Photonics Reviews. 18 (12): e202100216. doi:10.1002/jbio.202100216. PMID   34534405.
  23. Piavchenko, Gennadii; Kozlov, Igor; Dremin, Victor; Meglinski, Igor (2021). "Impairments of cerebral blood flow microcirculation in rats brought on by cardiac cessation and respiratory arrest". Journal of Biophotonics. 14 (12): e202100216. doi:10.1002/jbio.202100216. PMID   34534405.
  24. "Laser Method Boosts Accuracy of Blood Flow Measurements in Feet", PHOTONICS Spectra (February 2023)
  25. Aston University scientists discover more accurate way of checking blood flow in the feet of type 2 diabetes patients
  26. Aston devises more accurate method to check blood flow in diabetes patients
  27. Aston University researcher uses art to help demystify complex science
  28. Aston University researcher uses art to help demystify complex science
  29. Igor Meglinski Research Gate
  30. "Google Scholar: Igor Meglinski".
  31. EurekAlert! American Association for the Advancement of Science (AAAS): Top 100 in Photonics
  32. Igor Meglinski Top 100 in Photonics
  33. Igor Meglinski Photonics Top 100 in life sciences, biophotonics, and biomedical optics
  34. Aston University professor elected Fellow of Royal Microscopical Society
  35. The Optical Society Elected Fellows
  36. The Royal Society APEX Award
  37. Complete List of SPIE Fellows
  38. Fellows of Institute of Physics
  39. Senior Member of IEEE