Impatiens necrotic spot orthotospovirus

Last updated
Impatiens necrotic spot orthotospovirus
INSV.JPG
Impatiens necrotic spot virus on a Fuchsia leaf
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Negarnaviricota
Class: Ellioviricetes
Order: Bunyavirales
Family: Tospoviridae
Genus: Orthotospovirus
Species:
Impatiens necrotic spot orthotospovirus
Synonyms
  • Impatiens necrotic spot virus

Impatiens necrotic spot orthotospovirus(INSV) is a plant pathogenic virus of the order Bunyavirales . It was originally believed to be another strain of Tomato spotted wilt virus, but genetic investigations revealed them to be separate viruses. It is a negative-strand RNA virus which has a tripartite genome. [1] It is largely spread by the insect vector of the western flower thrips. The virus infects more than 648 species of plants including important horticultural and agricultural species such as fuchsia, tomato, orchids, [2] and lettuce (especially romaine). As the name implies, the main symptom on plants is necrotic spots that appear on the leaves. The INSV virus infects by injecting the RNA the virus contains into the cell which then starts using the cell resources to transcribe what the virus RNA states. [3] Viral infection can often result in the death of the plant. The disease is mainly controlled by the elimination of the western flower thrip vector and by destroying any infected plant material.

Contents

Disease cycle

The disease is an ssRNA that injects itself into the host cell, then has the host cell duplicate the RNA sequence as well as the coat protein used to disguise the RNA. [4] The infected cell also starts to create movement proteins that facilitate the movement of the virus through the plant making the plasmodesmata (connections between plant cells) large enough to allow the virus to move throughout the plant. The virus can then also infect other plants by either the infected sap or a vector, such as an insect, which will start the cycle over again.

Management

Typically the best way to manage a virus problem is to get rid of any vectors that may carry the disease. This easily can be done by an insecticide. Another acceptable method would be resistance plants. These plants would kill off any infected cells, not allowing the virus to spread. Furthermore, larger distance between plants could help slow the spread of the disease by not allowing the virus to be transmitted. This can be done by controlling weeds and thrips, the most common vector transmission. [5] Chemical controls of herbicides and insecticides can be implemented and is the best form of control. If virus remains a problem, other plants can be planted in that area that do not have the traits required for infection of INSV.

Hosts and symptoms

INSV has a wide host range and can be found in over 300 plant species including weeds, fruits, vegetables and ornamental crops. Of these, the most severely affected include tomatoes, lettuce, pepper and peppermint as well as most all ornamentals. [6] Symptoms of infection include a downward curling of the leaves, leaf tip dieback, stunting, necrosis of growing leaf tips, sunken 'chicken pox-like' spots on leaves (often with a surrounding halo), stem death and yellowing. [7] Since these symptoms are so generic, extreme caution must be taken when introducing new plants to your greenhouse. Infected plants can not be cured and not all hosts display visible symptoms [8]

Western Flower Thrips are extremely hard to remove from their host plants, as they often dig themselves deep into blossoms, buds and other areas hard to reach with insecticides. [9] So, even if plants are sprayed regularly with insecticide, INSV and other insect vectored viruses can not always be ruled out when forming diagnosis. [10]

Temperature and host both play an important factor when discussing the symptoms which an INSV infected plant will display. When New Guinea Impatiens are cultivated in an environment varying between 75 and 80 degrees Fahrenheit the host plant will be highly symptomatic. However, when New Guinea Impatiens are grown in an environment just 10 degrees cooler it is unlikely for there to be any observable symptoms of disease.

INSV- Lettuce (California, United States of America)

In 2006, INSV infected lettuce was first reported in Monterey County. For six years, there were minor to severe outbreaks. However, since 2018, Monterey County has seen severe outbreaks along with other coastal regions, seeing up to almost 100% crop loss. In the last year, INSV has been reported in desert lettuce regions in California (Riverside Counties) and in Arizona. When INSV gets into a lettuce plant, it can get spots and lines of dead tissue on its leaves. [11]

When lettuce is infected with INSV, it shows a number of symptoms, such as yellowing leaves, dead spots, and stunted growth. On the inner leaves there are patterns of necrosis and chlorosis. At the base of the ribs of infected lettuce plants there is significant necrosis and lesions. The necrotic tissue can look brown to dark brown. The symptoms can be different depending on how bad the infection is and how far along the plant is in its growth. Extensive necrosis can cause damaged leaves to become dry and dead. If a plant is infected in its early development stages, its growth may be stunted. The virus can also hurt the quality and yield of lettuce crops. [12]

Environment

INSV is a virus and relies on vector transmission in order to infect and spread to new hosts. This is achieved by insects called Western Flower Thrips. Western Flower Thrips are native to the western half of North America and are widespread within this natural domain. They are especially prevalent in warmer areas of the mountain west and pose the most notable threat to the popular apple cultivars of the region such as "Granny Smith" and "Ginger Golds." Apple cultivars will show great signs of cosmetic damage including large, dark halos with a central russet. These cosmetic wounds are known as "pansy spots." They are sites where a female has oviposited into developing flower buds or fruitlets. Despite the cosmetic damage suffered by these light skinned apple cultivars they are seemingly unaffected by most thrip vectored viruses. Infested apples of the mountain west simply provide a natural setting for Western Flower Thrips to thrive and reproduce.

Due to the large natural environment and hundreds of hosts Vector transmission allows the virus a range limited only by the reach of the insect. (3) [13] Greenhouses provide ideal environments for Western Flower Thrips and preventative measures must be taken in order to insure healthy plants. [14]

Although Wester Flower Thrips were at one time only a pest across the western United States and Canada, their spread has now reached worldwide. They are now considered to be the most serious pest for floricultural plants across much of the world. [15] Females lay anywhere from 150 to 300 eggs during their lifetime, with each offspring having a life of roughly 28 days. The majority of their lives are spent in their adult stage.

Importance

The spread of INSV can be achieved easily through the importation of infected plants. This has been demonstrated in 1991 by its sudden emergence in Portugal, where it was discovered in over 30 plant species. [16] Because of their preference for hidden away living spaces they often travel undetected globally. By raising Enzyme-linked immunosorbent assays against the nucleoproteins of symptomatic species, eight isolates have been identified in Italian vegetable and ornamental crops alone. [17] By providing favorable year round conditions, greenhouses allow INSV carrying Western Flower Thrips a permanent residence unless eradicated. INSV can attack 648 different species, being the number one disease in gloxinia and impatiens, and has numerous symptoms often making diagnosis more difficult. [18]

Symptoms of Impatiens necrotic spot virus in an Orchid species

Related Research Articles

<span class="mw-page-title-main">Leaf spot</span> Damaged areas of leaves

A leaf spot is a limited, discoloured, diseased area of a leaf that is caused by fungal, bacterial or viral plant diseases, or by injuries from nematodes, insects, environmental factors, toxicity or herbicides. These discoloured spots or lesions often have a centre of necrosis. Symptoms can overlap across causal agents, however differing signs and symptoms of certain pathogens can lead to the diagnosis of the type of leaf spot disease. Prolonged wet and humid conditions promote leaf spot disease and most pathogens are spread by wind, splashing rain or irrigation that carry the disease to other leaves.

<i>Lettuce mosaic virus</i> Species of virus

Lettuce mosaic virus (LMV) is a typical potyvirus, which causes one of the major virus diseases of lettuce crops worldwide.

<i>Potato leafroll virus</i> Species of virus

Potato leafroll virus (PLRV) is a member of the genus Polerovirus and family Solemoviridae. The phloem limited positive sense RNA virus infects potatoes and other members of the family Solanaceae. PLRV was first described by Quanjer et al. in 1916. PLRV is transmitted by aphids, primarily the green peach aphid, Myzus persicae. PLRV is one of the most important potato viruses worldwide but particularly devastating in countries with limited resources and management. It can be responsible for individual plant yield losses of over 50%. One estimate suggests that PLRV is responsible for an annual global yield loss of 20 million tons. Symptoms include chlorosis, necrosis and leaf curling.

<span class="mw-page-title-main">Aster yellows</span> Plant disease

Aster yellows is a chronic, systemic plant disease caused by several bacteria called phytoplasma. The aster yellows phytoplasma (AYP) affects 300 species in 38 families of broad-leaf herbaceous plants, primarily in the aster family, as well as important cereal crops such as wheat and barley. Symptoms are variable and can include phyllody, virescence, chlorosis, stunting, and sterility of flowers. The aster leafhopper vector, Macrosteles quadrilineatus, moves the aster yellows phytoplasma from plant to plant. Its economic burden is primarily felt in the carrot crop industry, as well as the nursery industry. No cure is known for plants infected with aster yellows. Infected plants should be removed immediately to limit the continued spread of the phytoplasma to other susceptible plants. However, in agricultural settings such as carrot fields, some application of chemical insecticides has proven to minimize the rate of infection by killing the vector.

<i>Cucumber mosaic virus</i> Species of virus

Cucumber mosaic virus (CMV) is a plant pathogenic virus in the family Bromoviridae. This virus has a worldwide distribution and a very wide host range, having the reputation of the widest host range of any known plant virus. It can be transmitted from plant to plant both mechanically by sap and by aphids in a stylet-borne fashion. It can also be transmitted in seeds and by the parasitic weeds, Cuscuta sp. (dodder).

<i>Cymbidium mosaic virus</i> Species of virus

Cymbidium mosaic virus (CymMV) is a plant pathogenic virus of the family Alphaflexiviridae.

<i>Tobacco streak virus</i> Species of virus

Tobacco streak virus (TSV) is a plant pathogenic virus of the family Bromoviridae, in the genus Ilarvirus. It has a wide host range, with at least 200 susceptible species. TSV is generally more problematic in the tropics or warmer climates. TSV does not generally lead to epidemics, with the exception of sunflowers in India and Australia, and peanuts in India.

<i>Orthotospovirus</i> Genus of viruses

Orthotospovirus is a genus of negative-strand RNA viruses, in the family Tospoviridae of the order Bunyavirales, which infects plants. Tospoviruses take their name from the species Tomato spotted wilt orthotospovirus (TSWV) which was discovered in Australia in 1919. TSWV remained the only known member of the family until the early 1990s when genetic characterisation of plant viruses became more common. There are now at least twenty species in the genus with more being discovered on a regular basis. Member viruses infect over eight hundred plant species from 82 different families.

Blueberry shock virus (BlShV) is an Ilarvirus belonging to the Bromoviridae family. The Bromoviridae family contains single-stranded, positive-sense RNA viruses. Virus particles are icosahedral and 30 nm in diameter. Blueberry shock virus causes shock of blueberries in Oregon, Washington, and British Columbia. It gets its name because plants are shocked by the initial infection, meaning the flowers and foliage blight and wilt in the early spring, right when the plant is in full bloom. BIShV was first discovered in a blueberry field containing highbush blueberry in Washington in 1991. It continued to spread to Oregon, Washington and British Columbia since that time. In 2009, the disease was found in a western Michigan field, and may be preset in Pennsylvania as of 2011. Since its discovery, eradication is in progress to eliminate the disease and reduce loss of yield from it.

<i>Melon necrotic spot virus</i> Species of virus

Melon necrotic spot virus (MNSV) is a virus that belongs to the genus Gammacarmovirus of the family Tombusviridae. It has been observed in several countries in the Americas, Africa, Asia, and Europe. It is considered to be an endemic virus in greenhouses and field productions of Cucurbitaceae crops, including melon, cucumber, and watermelon. MNSV is mainly spread through infected soil, seedlings, insects, and by the root-inhabiting fungus vector Olpidium bornovanus Symptoms vary between Curbitaceae crops, but generally consist of chlorosis, brown necrotic lesions, leaf wilt, fruit decay, and plant death. Management of the disease consists of preventing infection by rotating fields and crops, steam sterilization, and disposal of infected plants. Also, treated seeds with heat or chemicals are efficient in preventing infection. MNSV is important in melon plants as it causes vast economical damage worldwide reducing significant yields.

Soybean vein necrosis orthotospovirus is a plant pathogenic virus of soybeans. SVNV is a relatively new virus, which was discovered in Tennessee in 2008 and has recently been found in many US states from the Southeast and East coast to some western states including CA. This pathogen initially causes intraveinal chlorosis (yellowing) in leaves. This chlorosis then spreads throughout the leaf and eventually these chlorotic areas can become necrotic. It is a member of the order Bunyavirales, family Tospoviridae and genus Orthotospovirus, which is the only genus within this virus family that infects plants. Like other members of Bunyavirales, this virus is enveloped and has a negative sense single-stranded RNA (−ssRNA) genome composed of three genomic segments. It encodes proteins on the M and S segments in an ambisense manner.

Torradovirus is a genus of viruses in the order Picornavirales, in the family Secoviridae. Plants serve as natural hosts. There are six species in this genus. Diseases associated with this genus include: torrado disease: severe necrosis of leaves and fruits.

Cocoa necrosis virus (CoNV) is a plant pathogenic virus of the genus nepovirus that infects Theobroma cacao en natura causing cacao necrosis disease. CoNV is considered synonymous with Strain S of cacao swollen shoot virus. Unlike Cacao swollen shoot virus, it is not transmitted by mealybugs nor vectored by aphids, beetles, or leafhoppers that also commonly infest cacao. It is serologically, distantly related to Tomato black ring virus and very distantly related to Grapevine chrome mosaic virus.

<i>Thrips tabaci</i> Species of thrip

Thrips tabaci is a species of very small insect in the genus Thrips in the order Thysanoptera. It is commonly known as the onion thrips, the potato thrips, the tobacco thrips or the cotton seedling thrips. It is an agricultural pest that can damage crops of onions and other plants, and it can additionally act as a vector for plant viruses.

Frankliniella schultzei, the common blossom thrips or cotton thrips, is a species of thrips in the family Thripidae. It is found in many parts of the world and is an important pest insect in agriculture.

<span class="mw-page-title-main">Tomato spotted wilt orthotospovirus</span> Species of virus

Tomato spotted wilt orthotospovirus (TSWV) is a spherical negative-sense RNA virus. Transmitted by thrips, it causes serious losses in economically important crops and it is one of the most economically devastating plant viruses in the world.

<i>Blueberry mosaic associated ophiovirus</i> Species of virus

The Blueberry mosaic associated ophiovirus (B1MaV) is a plant virus which infects blueberry plants, causing a discoloration of the leaves of the plants in a mosaic-like pattern. The disease is found in blueberry plants in many regions of North America, as well as South America, Europe, New Zealand, and South Africa. Within these regions the virus is most often found in high blueberry-yielding areas, but can be spread to other locations. Blueberry mosaic associatedophiovirus is one of seven species in the genus Ophiovirus. It is a member of the Aspiviridae family, in the Serpentovirales order, and in the Milnevircetes class. The Ophioviridae viruses are characterized by a flexible and elongated nucleocapsid that is composed mostly of filamentous structures and is helically symmetrical. It also has a non-enveloped protein capsid that is capable of coiling around itself allowing for a super-coiled structure and the helical symmetry. The virus has the potential to be symptomatic or asymptomatic within plants causing the display of symptoms in only a few plants, but the ability to transmit the virus unknowingly in many plants. B1MaV often remains asymptomatic for long periods of time after initial infection allowing for blind transmission.

Carrot virus Y (CarVY) is a (+)ss-RNA virus that affects crops of the carrot family (Apiaceae), such as carrots, anise, chervil, coriander, cumin, dill and parsnip. Carrots are the only known crop to be infected in the field. Infection by the virus leads to deformed roots and discolored or mottled leaves. The virus is spread through insect vectors, and is currently only found in Australia.

<span class="mw-page-title-main">Viral diseases of potato</span> Group of diseases affecting potato plants

Viral diseases of potato are a group of diseases caused by different types of Viruses that affect potato crops worldwide and, although they do not affect human or animal health since they are viruses that only infect vegetables, they are a source of great economic losses annually. About 28 viruses have been reported infecting potato crops. However, potato virus X (PVX), potato virus Y (PVY), and potato leafroll virus (PLRV) are the most important viruses worldwide. Some others are of economic importance only in some regions. Such is the case of potato virus M (PVM) in some Asian and European countries.

References

Louro, D. 1996. DETECTION AND IDENTIFICATION OF TOMATO SPOTTED WILT VIRUS AND IMPATIENS NECROTIC SPOT VIRUS IN PORTUGAL. Acta Hort. (ISHS) 431:99-108 (1)

VAIRA, A. M., ROGGERO, P., LUISONI, E., MASENGA, V., MILNE, R. G. and LISA, V. (1993), Characterization of two Tospoviruses in Italy: tomato spotted wilt and impatiens necrotic spot. Plant Pathology, 42: 530–542. (2)

DeAngelis, J. D., Sether, D. M., and Rossignol, P. A. 1994. Transmission of Impatiens necrotic spot virus in peppermint by western flower thrips (Thysanoptera, Thripidae). J. Econ. Entomol. 87:197-201. (3)

  1. F van Poelwijk, M Prins and R Goldbach (1997) Completion of the Impatiens necrotic spot virus genome sequence and genetic comparison of the L proteins within the family Bunyaviridae. Journal of General Virology 78:543-546
  2. Baker, C. A.; Davison, D.; Jones, L. (2007). "Impatiens necrotic spot virus and Tomato spotted wilt virus Diagnosed in Phalaenopsis Orchids from Two Florida Nurseries". Plant Disease. 91 (11): 1515. doi:10.1094/PDIS-91-11-1515A. PMID   30780760.
  3. Haan, Peter; Antonio C. de Avila (13 July 1992). "The nucleotide sequence of the S RNA of Impatiens necrotic spot virus, a novel tospovirus". FEBS Letters. 306 (1): 27–32. doi: 10.1016/0014-5793(92)80830-a . PMID   1385787. S2CID   22595413.
  4. "nucleoprotein".
  5. "Impatiens Necrotic Spot Virus".
  6. "ICTVdB - The Universal Virus Database: Impatiens necrotic spot virus". Archived from the original on 2006-09-09.
  7. "- Management of INSV". Archived from the original on 2011-02-21. Retrieved 2007-08-12.
  8. "Western flower thrips". Archived from the original on 2016-10-14. Retrieved 2011-11-17.
  9. "Ornamentals and Turf". Archived from the original on 2016-10-14. Retrieved 2011-11-17.
  10. "WESTERN FLOWER THRIPS in the greenhouse". Archived from the original on 2016-10-14. Retrieved 2011-11-17.
  11. Hasegawa, Daniel K.; Del Pozo-Valdivia, Alejandro I. (2023-04-01). "Epidemiology and Economic Impact of Impatiens Necrotic Spot Virus: A Resurging Pathogen Affecting Lettuce in the Salinas Valley of California". Plant Disease. 107 (4): 1192–1201. doi:10.1094/pdis-05-22-1248-re. ISSN   0191-2917.
  12. "Early Cases of INSV Occurring in Lettuce". ANR Blogs. Retrieved 2023-05-01.
  13. "Impatiens Necrotic Spot Virus".
  14. "Greenhouse plant viruses".
  15. Frank, Steven. "Western flower thrips, Frankliniella occidentalis (Pergande), Thripidae, THYSANOPTERA". Archived from the original on 2016-10-14. Retrieved 2011-11-17.
  16. "(TSWV/INSV)".
  17. "(TSWV/INSV)".
  18. "Diseases".