Impossible world

Last updated

In philosophical logic, the concept of an impossible world (sometimes called a non-normal world) is used to model certain phenomena that cannot be adequately handled using ordinary possible worlds. An impossible world, , is the same sort of thing as a possible world (whatever that may be), except that it is in some sense "impossible." Depending on the context, this may mean that some contradictions, statements of the form are true at , or that the normal laws of logic, metaphysics, and mathematics, fail to hold at , or both. Impossible worlds are controversial objects in philosophy, logic, and semantics. They have been around since the advent of possible world semantics for modal logic, as well as world based semantics for non-classical logics, but have yet to find the ubiquitous acceptance, that their possible counterparts have found in all walks of philosophy.

Contents

Argument from ways

Possible worlds

Possible worlds are often regarded with suspicion, which is why their proponents have struggled to find arguments in their favor. [1] An often-cited argument is called the argument from ways. It defines possible worlds as "ways how things could have been" and relies for its premises and inferences on assumptions from natural language, [2] [3] [4] for example:

(1) Hillary Clinton could have won the 2016 US election.
(2) So there are other ways how things could have been.
(3) Possible worlds are ways how things could have been.
(4) So there are other possible worlds.

The central step of this argument happens at (2) where the plausible (1) is interpreted in a way that involves quantification over "ways". Many philosophers, following Willard Van Orman Quine, [5] hold that quantification entails ontological commitments, in this case, a commitment to the existence of possible worlds. Quine himself restricted his method to scientific theories, but others have applied it also to natural language, for example, Amie L. Thomasson in her paper entitled Ontology Made Easy. [6] The strength of the argument from ways depends on these assumptions and may be challenged by casting doubt on the quantifier-method of ontology or on the reliability of natural language as a guide to ontology.

Impossible worlds

A similar argument can be used to justify the thesis that there are impossible worlds, [3] for example:

(a) Hillary Clinton couldn't have both won and lost the 2016 US election.
(b) So there are ways how things couldn't have been.
(c) Impossible worlds are ways how things couldn't have been.
(d) So there are impossible worlds.

The problem for the defender of possible worlds is that language is ambiguous concerning the meaning of (a): does it mean that this is a way how things couldn't be or that this is not a way how things could be. [2] It is open to critics of impossible worlds to assert the latter option, which would invalidate the argument.

Applications

Non-normal modal logics

Non-normal worlds were introduced by Saul Kripke in 1965 as a purely technical device to provide semantics for modal logics weaker than the system K — in particular, modal logics that reject the rule of necessitation:

.

Such logics are typically referred to as "non-normal." Under the standard interpretation of modal vocabulary in Kripke semantics, we have if and only if in each model, holds in all worlds. To construct a model in which holds in all worlds but does not, we need either to interpret in a non-standard manner (that is, we do not just consider the truth of in every accessible world), or we reinterpret the condition for being valid. This latter choice is what Kripke does. We single out a class of worlds as normal, and we take validity to be truth in every normal world in a model. in this way we may construct a model in which is true in every normal world, but in which is not. We need only ensure that this world (at which fails) have an accessible world which is not normal. Here, can fail, and hence, at our original world, fails to be necessary, despite being a truth of the logic.

These non-normal worlds are impossible in the sense that they are not constrained by what is true according to the logic. From the fact that , it does not follow that holds in a non-normal world.

For more discussion of the interpretation of the language of modal logic in models with worlds, see the entries on modal logic and on Kripke semantics.

Avoiding Curry's paradox

Curry's paradox is a serious problem for logicians who are interested in developing formal languages that are "semantically closed" (i.e. that can express their own semantics). The paradox relies on the seemingly obvious principle of contraction:

.

There are ways of using non-normal worlds in a semantical system that invalidate contraction. Moreover, these methods can be given a reasonable philosophical justification by construing non-normal worlds as worlds at which "the laws of logic fail."

Counternecessary statements

A counternecessary statement is a counterfactual conditional whose antecedent is not merely false, but necessarily so (or whose consequent is necessarily true).

For the sake of argument, assume that either (or both) of the following are the case:

1. Intuitionism is false.
2. The law of excluded middle is true.

Presumably each of these statements is such that if it is true (false), then it is necessarily true (false).

Thus one (or both) of the following is being assumed:

1′. Intuitionism is false at every possible world.
2′. The law of excluded middle is true at every possible world.

Now consider the following:

3. If intuitionism is true, then the law of excluded middle holds.

This is intuitively false, as one of the fundamental tenets of intuitionism is precisely that the LEM does not hold. Suppose this statement is cashed out as:

3′. Every possible world at which intuitionism is true is a possible world at which the law of excluded middle holds true.

This holds vacuously, given either (1′) or (2′).

Now suppose impossible worlds are considered in addition to possible ones. It is compatible with (1′) that there are impossible worlds at which intuitionism is true, and with (2′) that there are impossible worlds at which the LEM is false. This yields the interpretation:

3*. Every (possible or impossible) world at which intuitionism is true is a (possible or impossible) world at which the law of excluded middle holds.

This does not seem to be the case, for intuitively there are impossible worlds at which intuitionism is true and the law of excluded middle does not hold.

See also

Related Research Articles

Gödel's ontological proof is a formal argument by the mathematician Kurt Gödel (1906–1978) for the existence of God. The argument is in a line of development that goes back to Anselm of Canterbury (1033–1109). St. Anselm's ontological argument, in its most succinct form, is as follows: "God, by definition, is that for which no greater can be conceived. God exists in the understanding. If God exists in the understanding, we could imagine Him to be greater by existing in reality. Therefore, God must exist." A more elaborate version was given by Gottfried Leibniz (1646–1716); this is the version that Gödel studied and attempted to clarify with his ontological argument.

<span class="mw-page-title-main">Saul Kripke</span> American philosopher and logician (1940–2022)

Saul Aaron Kripke was an American analytic philosopher and logician. He was Distinguished Professor of Philosophy at the Graduate Center of the City University of New York and emeritus professor at Princeton University. Kripke is considered one of the most important philosophers of the latter half of the 20th century. Since the 1960s, he has been a central figure in a number of fields related to mathematical and modal logic, philosophy of language and mathematics, metaphysics, epistemology, and recursion theory.

Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic.

Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic logics treat the formula as a tautology, representing the principle that only true statements can count as knowledge.

Counterfactual conditionals are conditional sentences which discuss what would have been true under different circumstances, e.g. "If Peter believed in ghosts, he would be afraid to be here." Counterfactuals are contrasted with indicatives, which are generally restricted to discussing open possibilities. Counterfactuals are characterized grammatically by their use of fake tense morphology, which some languages use in combination with other kinds of morphology including aspect and mood.

In mathematical logic, Löb's theorem states that in Peano arithmetic (PA) (or any formal system including PA), for any formula P, if it is provable in PA that "if P is provable in PA then P is true", then P is provable in PA. If Prov(P) means that the formula P is provable, we may express this more formally as

A possible world is a complete and consistent way the world is or could have been. Possible worlds are widely used as a formal device in logic, philosophy, and linguistics in order to provide a semantics for intensional and modal logic. Their metaphysical status has been a subject of controversy in philosophy, with modal realists such as David Lewis arguing that they are literally existing alternate realities, and others such as Robert Stalnaker arguing that they are not.

Kripke semantics is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke.

In logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system. In other words, every formula that can be derived using that rule is already derivable without that rule, so, in a sense, it is redundant. The concept of an admissible rule was introduced by Paul Lorenzen (1955).

Deontic logic is the field of philosophical logic that is concerned with obligation, permission, and related concepts. Alternatively, a deontic logic is a formal system that attempts to capture the essential logical features of these concepts. It can be used to formalize imperative logic, or directive modality in natural languages. Typically, a deontic logic uses OA to mean it is obligatory that A, and PA to mean it is permitted that A, which is defined as .

Modal realism is the view propounded by philosopher David Lewis that all possible worlds are real in the same way as is the actual world: they are "of a kind with this world of ours." It is based on four tenets: possible worlds exist, possible worlds are not different in kind from the actual world, possible worlds are irreducible entities, and the term actual in actual world is indexical, i.e. any subject can declare their world to be the actual one, much as they label the place they are "here" and the time they are "now".

Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge. While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applications in many fields, including philosophy, theoretical computer science, artificial intelligence, economics and linguistics. While philosophers since Aristotle have discussed modal logic, and Medieval philosophers such as Avicenna, Ockham, and Duns Scotus developed many of their observations, it was C. I. Lewis who created the first symbolic and systematic approach to the topic, in 1912. It continued to mature as a field, reaching its modern form in 1963 with the work of Kripke.

In logic, general frames are Kripke frames with an additional structure, which are used to model modal and intermediate logics. The general frame semantics combines the main virtues of Kripke semantics and algebraic semantics: it shares the transparent geometrical insight of the former, and robust completeness of the latter.

In mathematics and philosophy, Łukasiewicz logic is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic; it was later generalized to n-valued as well as infinitely-many-valued (0-valued) variants, both propositional and first order. The ℵ0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the Łukasiewicz–Tarski logic. It belongs to the classes of t-norm fuzzy logics and substructural logics.

In philosophy, specifically in the area of metaphysics, counterpart theory is an alternative to standard (Kripkean) possible-worlds semantics for interpreting quantified modal logic. Counterpart theory still presupposes possible worlds, but differs in certain important respects from the Kripkean view. The form of the theory most commonly cited was developed by David Lewis, first in a paper and later in his book On the Plurality of Worlds.

In logic and philosophy, S5 is one of five systems of modal logic proposed by Clarence Irving Lewis and Cooper Harold Langford in their 1932 book Symbolic Logic. It is a normal modal logic, and one of the oldest systems of modal logic of any kind. It is formed with propositional calculus formulas and tautologies, and inference apparatus with substitution and modus ponens, but extending the syntax with the modal operator necessarily and its dual possibly.

In modal logic, standard translation is a logic translation that transforms formulas of modal logic into formulas of first-order logic which capture the meaning of the modal formulas. Standard translation is defined inductively on the structure of the formula. In short, atomic formulas are mapped onto unary predicates and the objects in the first-order language are the accessible worlds. The logical connectives from propositional logic remain untouched and the modal operators are transformed into first-order formulas according to their semantics.

Logical consequence is a fundamental concept in logic which describes the relationship between statements that hold true when one statement logically follows from one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises? All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth.

In modal logic, the necessity of identity is the thesis that for every object x and object y, if x and y are the same object, it is necessary that x and y are the same object. The thesis is best known for its association with Saul Kripke, who published it in 1971, although it was first derived by the logician Ruth Barcan Marcus in 1947, and later, in simplified form, by W. V. O. Quine in 1953.

The formal fallacy or the modal fallacy is a special type of fallacy that occurs in modal logic. It is the fallacy of placing a proposition in the wrong modal scope, most commonly confusing the scope of what is necessarily true. A statement is considered necessarily true if and only if it is impossible for the statement to be untrue and that there is no situation that would cause the statement to be false. Some philosophers further argue that a necessarily true statement must be true in all possible worlds.

References

  1. Lewis, David K. (1973). "4. Foundations". Counterfactuals. Blackwell.
  2. 1 2 Laan, David A. Vander (1997). "The Ontology of Impossible Worlds". Notre Dame Journal of Formal Logic. 38 (4): 597–620. doi: 10.1305/ndjfl/1039540772 .
  3. 1 2 Berto, Francesco; Jago, Mark (2018). Impossible Worlds . Retrieved 14 November 2020.{{cite encyclopedia}}: |website= ignored (help)
  4. Menzel, Christopher (2017). Possible Worlds . Retrieved 14 November 2020.{{cite encyclopedia}}: |website= ignored (help)
  5. Quine, Willard V. (1948). "On What There Is". Review of Metaphysics. 2 (1): 21–38.
  6. Thomasson, Amie L. (2014). Ontology Made Easy. Oup Usa. p. 248.

Bibliography