Incomplete LU factorization

Last updated

In numerical linear algebra, an incomplete LU factorization (abbreviated as ILU) of a matrix is a sparse approximation of the LU factorization often used as a preconditioner.

Contents

Introduction

Consider a sparse linear system . These are often solved by computing the factorization , with L lower unitriangular and U upper triangular. One then solves , , which can be done efficiently because the matrices are triangular.

For a typical sparse matrix, the LU factors can be much less sparse than the original matrix a phenomenon called fill-in. The memory requirements for using a direct solver can then become a bottleneck in solving linear systems. One can combat this problem by using fill-reducing reorderings of the matrix's unknowns, such as the Minimum degree algorithm.

An incomplete factorization instead seeks triangular matrices L, U such that rather than . Solving for can be done quickly but does not yield the exact solution to . So, we instead use the matrix as a preconditioner in another iterative solution algorithm such as the conjugate gradient method or GMRES.

Definition

For a given matrix one defines the graph as

which is used to define the conditions a sparsity pattern needs to fulfill

A decomposition of the form where the following hold

is called an incomplete LU decomposition (with respect to the sparsity pattern ).

The sparsity pattern of L and U is often chosen to be the same as the sparsity pattern of the original matrix A. If the underlying matrix structure can be referenced by pointers instead of copied, the only extra memory required is for the entries of L and U. This preconditioner is called ILU(0).

Stability

Concerning the stability of the ILU the following theorem was proven by Meijerink and van der Vorst. [1]

Let be an M-matrix, the (complete) LU decomposition given by , and the ILU by . Then

holds. Thus, the ILU is at least as stable as the (complete) LU decomposition.

Generalizations

One can obtain a more accurate preconditioner by allowing some level of extra fill in the factorization. A common choice is to use the sparsity pattern of A2 instead of A; this matrix is appreciably more dense than A, but still sparse over all. This preconditioner is called ILU(1). One can then generalize this procedure; the ILU(k) preconditioner of a matrix A is the incomplete LU factorization with the sparsity pattern of the matrix Ak+1.

More accurate ILU preconditioners require more memory, to such an extent that eventually the running time of the algorithm increases even though the total number of iterations decreases. Consequently, there is a cost/accuracy trade-off that users must evaluate, typically on a case-by-case basis depending on the family of linear systems to be solved.

An approximation to the ILU factorization can be performed as a fixed-point iteration in a highly parallel way. [2]

See also

Related Research Articles

In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the i-th approximation is derived from the previous ones.

<span class="mw-page-title-main">Symmetric matrix</span> Matrix equal to its transpose

In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,

In linear algebra, the Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices, and posthumously published in 1924. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems of linear equations.

In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

In the mathematical subfield of numerical analysis the symbolic Cholesky decomposition is an algorithm used to determine the non-zero pattern for the factors of a symmetric sparse matrix when applying the Cholesky decomposition or variants.

<span class="mw-page-title-main">Conjugate gradient method</span> Mathematical optimization algorithm

In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite. The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems.

FastICA is an efficient and popular algorithm for independent component analysis invented by Aapo Hyvärinen at Helsinki University of Technology. Like most ICA algorithms, FastICA seeks an orthogonal rotation of prewhitened data, through a fixed-point iteration scheme, that maximizes a measure of non-Gaussianity of the rotated components. Non-gaussianity serves as a proxy for statistical independence, which is a very strong condition and requires infinite data to verify. FastICA can also be alternatively derived as an approximative Newton iteration.

The Rayleigh–Ritz method is a direct numerical method of approximating eigenvalues, originated in the context of solving physical boundary value problems and named after Lord Rayleigh and Walther Ritz.

In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process.

In numerical analysis, Stone's method, also known as the strongly implicit procedure or SIP, is an algorithm for solving a sparse linear system of equations. The method uses an incomplete LU decomposition, which approximates the exact LU decomposition, to get an iterative solution of the problem. The method is named after Harold S. Stone, who proposed it in 1968.

In mathematics, preconditioning is the application of a transformation, called the preconditioner, that conditions a given problem into a form that is more suitable for numerical solving methods. Preconditioning is typically related to reducing a condition number of the problem. The preconditioned problem is then usually solved by an iterative method.

In mathematics, Choi's theorem on completely positive maps is a result that classifies completely positive maps between finite-dimensional (matrix) C*-algebras. An infinite-dimensional algebraic generalization of Choi's theorem is known as Belavkin's "Radon–Nikodym" theorem for completely positive maps.

In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. The LU decomposition was introduced by the Polish astronomer Tadeusz Banachiewicz in 1938. To quote: "It appears that Gauss and Doolittle applied the method [of elimination] only to symmetric equations. More recent authors, for example, Aitken, Banachiewicz, Dwyer, and Crout … have emphasized the use of the method, or variations of it, in connection with non-symmetric problems … Banachiewicz … saw the point … that the basic problem is really one of matrix factorization, or “decomposition” as he called it." It is also sometimes referred to as LR decomposition.

Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.

In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations. It is a popular method for solving the large matrix equations that arise in systems theory and control, and can be formulated to construct solutions in a memory-efficient, factored form. It is also used to numerically solve parabolic and elliptic partial differential equations, and is a classic method used for modeling heat conduction and solving the diffusion equation in two or more dimensions. It is an example of an operator splitting method.

In numerical mathematics, hierarchical matrices (H-matrices) are used as data-sparse approximations of non-sparse matrices. While a sparse matrix of dimension can be represented efficiently in units of storage by storing only its non-zero entries, a non-sparse matrix would require units of storage, and using this type of matrices for large problems would therefore be prohibitively expensive in terms of storage and computing time. Hierarchical matrices provide an approximation requiring only units of storage, where is a parameter controlling the accuracy of the approximation. In typical applications, e.g., when discretizing integral equations, preconditioning the resulting systems of linear equations, or solving elliptic partial differential equations, a rank proportional to with a small constant is sufficient to ensure an accuracy of . Compared to many other data-sparse representations of non-sparse matrices, hierarchical matrices offer a major advantage: the results of matrix arithmetic operations like matrix multiplication, factorization or inversion can be approximated in operations, where

In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix and an approximating matrix, subject to a constraint that the approximating matrix has reduced rank. The problem is used for mathematical modeling and data compression. The rank constraint is related to a constraint on the complexity of a model that fits the data. In applications, often there are other constraints on the approximating matrix apart from the rank constraint, e.g., non-negativity and Hankel structure.

For computer science, in statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk functional defined over a reproducing kernel Hilbert space can be represented as a finite linear combination of kernel products evaluated on the input points in the training set data.

In linear algebra, a convergent matrix is a matrix that converges to the zero matrix under matrix exponentiation.

Sparse dictionary learning is a representation learning method which aims to find a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms, and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than any one of the signals being observed. These two properties lead to having seemingly redundant atoms that allow multiple representations of the same signal, but also provide an improvement in sparsity and flexibility of the representation.

References

  1. Meijerink, J. A.; Vorst, Van Der; A, H. (1977). "An iterative solution method for linear systems of which the coefficient matrix is a symmetric 𝑀-matrix". Mathematics of Computation. 31 (137): 148–162. doi: 10.1090/S0025-5718-1977-0438681-4 . ISSN   0025-5718.
  2. Chow, Edmond; Patel, Aftab (2015). "Fine-grained parallel incomplete LU factorization". SIAM Journal on Scientific Computing. 37 (2): C169-C193. doi:10.1137/140968896.