Incyclinide

Last updated
Incyclinide
Incyclinide skeletal.svg
Clinical data
Trade names Metastat (proposed)
ATC code
  • none
Legal status
Legal status
  • Abandoned?
Identifiers
  • (4aS,5aR,12aS)-3,10,12,12a-Tetrahydroxy-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydronaphthacen-2-carboxamide
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C19H17NO7
Molar mass 371.345 g·mol−1
3D model (JSmol)
  • c1cc2c(c(c1)O)C(=O)C3=C([C@]4([C@@H](C[C@@H]3C2)CC(=C(C4=O)C(=O)N)O)O)O
  • InChI=1S/C19H17NO7/c20-18(26)14-11(22)6-9-5-8-4-7-2-1-3-10(21)12(7)15(23)13(8)16(24)19(9,27)17(14)25/h1-3,8-9,21-22,24,27H,4-6H2,(H2,20,26)/t8-,9-,19-/m0/s1
  • Key:ZXFCRFYULUUSDW-OWXODZSWSA-N

Incyclinide (proposed trade name Metastat) is a chemically modified tetracycline antibiotic that was investigated in clinical trials for the treatment of rosacea, [1] various tumours, allergic and inflammatory diseases and a number of other conditions. [2] [3]

Data from animal studies suggest that centrally infused incyclinide attenuates microglial mediated neuroinflammation in the paraventricular nucleus of the hypothalamus and sympathetic activation in angiotensin II-induced hypertension. This was also associated with unique changes in gut microbial communities and profound attenuation of gut pathology in animal models of hypertension. [4]

Mechanism of action

Like other tetracyclines, incyclinide inhibits matrix metalloproteinases. In contrast to traditional tetracyclines, it lacks antibiotic properties. [5]

Related Research Articles

<span class="mw-page-title-main">ACE inhibitor</span> Class of medications used primarily to treat high blood pressure

Angiotensin-converting-enzyme inhibitors are a class of medication used primarily for the treatment of high blood pressure and heart failure. They work by causing relaxation of blood vessels as well as a decrease in blood volume, which leads to lower blood pressure and decreased oxygen demand from the heart.

<span class="mw-page-title-main">Blood pressure</span> Pressure exerted by circulating blood upon the walls of arteries

Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" refers to the pressure in the large arteries. Blood pressure is usually expressed in terms of the systolic pressure over diastolic pressure in the cardiac cycle. It is measured in millimeters of mercury (mmHg) above the surrounding atmospheric pressure.

<span class="mw-page-title-main">Minocycline</span> Chemical compound

Minocycline, sold under the brand name Minocin among others, is a tetracycline antibiotic medication used to treat a number of bacterial infections such as pneumonia. It is generally less preferred than the tetracycline doxycycline. Minocycline is also used for the treatment of acne and rheumatoid arthritis. It is taken by mouth or applied to the skin.

Antihypertensives are a class of drugs that are used to treat hypertension. Antihypertensive therapy seeks to prevent the complications of high blood pressure, such as stroke and myocardial infarction. Evidence suggests that reduction of the blood pressure by 5 mmHg can decrease the risk of stroke by 34% and of ischaemic heart disease by 21%, and can reduce the likelihood of dementia, heart failure, and mortality from cardiovascular disease. There are many classes of antihypertensives, which lower blood pressure by different means. Among the most important and most widely used medications are thiazide diuretics, calcium channel blockers, ACE inhibitors, angiotensin II receptor antagonists (ARBs), and beta blockers.

<span class="mw-page-title-main">Angiotensin-converting enzyme</span> Mammalian protein found in Homo sapiens

Angiotensin-converting enzyme, or ACE, is a central component of the renin–angiotensin system (RAS), which controls blood pressure by regulating the volume of fluids in the body. It converts the hormone angiotensin I to the active vasoconstrictor angiotensin II. Therefore, ACE indirectly increases blood pressure by causing blood vessels to constrict. ACE inhibitors are widely used as pharmaceutical drugs for treatment of cardiovascular diseases.

<span class="mw-page-title-main">Amlodipine</span> Dihydropyridine calcium channel blocker used to treat cardiovascular diseases

Amlodipine, sold under the brand name Norvasc among others, is a calcium channel blocker medication used to treat high blood pressure and coronary artery disease. It is taken by mouth.

<span class="mw-page-title-main">Doxycycline</span> Tetracycline-class antibiotic

Doxycycline is a broad-spectrum antibiotic of the tetracycline class used in the treatment of infections caused by bacteria and certain parasites. It is used to treat bacterial pneumonia, acne, chlamydia infections, Lyme disease, cholera, typhus, and syphilis. It is also used to prevent malaria in combination with quinine. Doxycycline may be taken by mouth or by injection into a vein.

<span class="mw-page-title-main">Fosinopril</span>

Fosinopril is an angiotensin converting enzyme (ACE) inhibitor used for the treatment of hypertension and some types of chronic heart failure. Fosinopril is the only phosphonate-containing ACE inhibitor marketed, by Bristol-Myers Squibb under the trade name Monopril. Fosinopril is a cascading pro-drug. The special niche for the medication that differentiates it from the other members of the ACE Inhibitor drug class is that was specifically developed for the use for patients with renal impairment. This was through manipulation of the metabolism and excretion, and is seen that fifty percent of the drug is hepatobiliary cleared, which can compensate for diminished renal clearance. The remaining fifty percent is excreted in urine. It does not need dose adjustment.

<span class="mw-page-title-main">Angiotensin II receptor blocker</span> Group of pharmaceuticals that modulate the renin–angiotensin system

Angiotensin II receptor blockers (ARBs), formally angiotensin II receptor type 1 (AT1) antagonists, also known as angiotensin receptor blockers, angiotensin II receptor antagonists, or AT1 receptor antagonists, are a group of pharmaceuticals that bind to and inhibit the angiotensin II receptor type 1 (AT1) and thereby block the arteriolar contraction and sodium retention effects of renin–angiotensin system.

<span class="mw-page-title-main">Rosacea</span> Skin condition resulting in redness, pimples and swelling, usually on the face

Rosacea is a long-term skin condition that typically affects the face. It results in redness, pimples, swelling, and small and superficial dilated blood vessels. Often, the nose, cheeks, forehead, and chin are most involved. A red, enlarged nose may occur in severe disease, a condition known as rhinophyma.

<span class="mw-page-title-main">Candesartan</span> Angiotensin II receptor antagonist

Candesartan is an angiotensin receptor blocker used mainly for the treatment of high blood pressure and congestive heart failure. Candesartan has a very low maintenance dose. The metabolism for the drug is unique as it is a cascading prodrug. Candesartan has good bioavailibility and is more potent among the AT-1 receptor antagonists.

<span class="mw-page-title-main">Demeclocycline</span> Chemical compound

Demeclocycline is a tetracycline antibiotic which was derived from a mutant strain of Streptomyces aureofaciens.

<span class="mw-page-title-main">Angiotensin-converting enzyme 2</span> Exopeptidase enzyme that acts on angiotensin I and II

Angiotensin-converting enzyme 2 (ACE2) is an enzyme that can be found either attached to the membrane of cells (mACE2) in the intestines, kidney, testis, gallbladder, and heart or in a soluble form (sACE2). Both membrane bound and soluble ACE2 are integral parts of the renin–angiotensin–aldosterone system (RAAS) that exists to keep the body's blood pressure in check. While mACE2 does not appear to factor into the harmful phase of RAAS, its existence is vital in order for the enzyme ADAM17 to cleave its extracellular domain to create soluble ACE2 (sACE2). Soluble ACE2 lowers blood pressure by catalyzing the hydrolysis of angiotensin II into angiotensin (1–7) which in turns binds to MasR receptors creating localized vasodilation and hence decreasing blood pressure. This decrease in blood pressure makes the entire process a promising drug target for treating cardiovascular diseases.

<span class="mw-page-title-main">Tetracycline antibiotics</span> Type of broad-spectrum antibiotic

Tetracyclines are a group of broad-spectrum antibiotic compounds that have a common basic structure and are either isolated directly from several species of Streptomyces bacteria or produced semi-synthetically from those isolated compounds. Tetracycline molecules comprise a linear fused tetracyclic nucleus to which a variety of functional groups are attached. Tetracyclines are named after their four ("tetra-") hydrocarbon rings ("-cycl-") derivation ("-ine"). They are defined as a subclass of polyketides, having an octahydrotetracene-2-carboxamide skeleton and are known as derivatives of polycyclic naphthacene carboxamide. While all tetracyclines have a common structure, they differ from each other by the presence of chloride, methyl, and hydroxyl groups. These modifications do not change their broad antibacterial activity, but do affect pharmacological properties such as half-life and binding to proteins in serum.

<span class="mw-page-title-main">Rifaximin</span> Antibiotic medication

Rifaximin, is a non-absorbable, broad spectrum antibiotic mainly used to treat travelers' diarrhea. It is based on the rifamycin antibiotics family. Since its approval in Italy in 1987, it has been licensed in over more than 30 countries for the treatment of a variety of gastrointestinal diseases like irritable bowel syndrome, and hepatic encephalopathy. It acts by inhibiting RNA synthesis in susceptible bacteria by binding to the RNA polymerase enzyme. This binding blocks translocation, which stops transcription. It is marketed under the brand name Xifaxan by Salix Pharmaceuticals.

<span class="mw-page-title-main">Saralasin</span> Chemical compound

Saralasin is a competitive angiotensin II receptor antagonist with partial agonist activity. The aminopeptide sequence for saralasin differs from angiotensin II at three sites. At position 1, sarcosine replaces aspartic acid increasing the affinity for vascular smooth muscle receptors and making the peptide resistant to degradation by aminopeptidases Pals et al (1979). At position 5, isoleucine is replaced by valine, and at position 8, phenylalanine is replaced by alanine which leads to a smaller stimulatory effect. Saralasin was used to distinguish renovascular hypertension from essential hypertension prior to its discontinuation in January, 1984 because of a number of false-positive and false-negative reports Hutchison and Shahan (2004).

<span class="mw-page-title-main">Renin inhibitor</span> Compound inhibiting the activity of renin

Renin inhibitors are pharmaceutical drugs inhibiting the activity of renin that is responsible for hydrolyzing angiotensinogen to angiotensin I, which in turn reduces the formation of angiotensin II that facilitates blood pressure.

<span class="mw-page-title-main">Pathophysiology of hypertension</span>

Pathophysiology is a medicine which explains the function of the body as it relates to diseases and conditions. The pathophysiology of hypertension is an area which attempts to explain mechanistically the causes of hypertension, which is a chronic disease characterized by elevation of blood pressure. Hypertension can be classified by cause as either essential or secondary. About 90–95% of hypertension is essential hypertension. Some authorities define essential hypertension as that which has no known explanation, while others define its cause as being due to overconsumption of sodium and underconsumption of potassium. Secondary hypertension indicates that the hypertension is a result of a specific underlying condition with a well-known mechanism, such as chronic kidney disease, narrowing of the aorta or kidney arteries, or endocrine disorders such as excess aldosterone, cortisol, or catecholamines. Persistent hypertension is a major risk factor for hypertensive heart disease, coronary artery disease, stroke, aortic aneurysm, peripheral artery disease, and chronic kidney disease.

Lactotripeptides are two naturally occurring milk peptides: Isoleucine-Proline-Proline (IPP) and Valine-Proline-Proline (VPP). These lactotripeptides are derived from casein, which is a milk protein also found in dairy products. Although most normal dairy products contain lactotripeptides, they are inactive within the original milk proteins. Dairy peptides can be effectively released through enzymatic predigestion – a process by which milk protein is enzymatically broken down into smaller pieces. Some clinical studies have suggested that these lactotripeptides help promote healthy blood pressure levels as part of a healthy diet and lifestyle. However, other clinical trials have seen no effects from these compounds.

<span class="mw-page-title-main">Fimasartan</span> Chemical compound

Fimasartan is a non-peptide angiotensin II receptor antagonist (ARB) used for the treatment of hypertension and heart failure. Through oral administration, fimasartan blocks angiotensin II receptor type 1 (AT1 receptors), reducing pro-hypertensive actions of angiotensin II, such as systemic vasoconstriction and water retention by the kidneys. Concurrent administration of fimasartan with diuretic hydrochlorothiazide has shown to be safe in clinical trials. Fimasartan was approved for use in South Korea on September 9, 2010, and is available under the brand name Kanarb through Boryung Pharmaceuticals, who are presently seeking worldwide partnership.

References

  1. Reuters: CollaGenex says incyclinide ineffective for rosacea
  2. Spreitzer H (2 July 2007). "Neue Wirkstoffe - Incyclinid". Österreichische Apothekerzeitung (in German) (14/2007): 655.
  3. ClinicalTrials.gov: Incyclinide
  4. Sharma RK, Yang T, Oliveira AC, Lobaton GO, Aquino V, Kim S, et al. (March 2019). "Microglial Cells Impact Gut Microbiota and Gut Pathology in Angiotensin II-Induced Hypertension". Circulation Research. 124 (5): 727–736. doi:10.1161/CIRCRESAHA.118.313882. PMC   6395495 . PMID   30612527.
  5. Viera MH, Perez OA, Berman B (2007). "Incyclinide". Drugs of the Future. 32 (3): 209–214. doi:10.1358/dof.2007.032.03.1083308.