Industrial fire

Last updated
Oil tank burning after the 2012 Amuay refinery explosion. Tanque de refineria Amuay en llamas.jpg
Oil tank burning after the 2012 Amuay refinery explosion.
Oil leak and subsequent fire at the Standard Oil refinery in Bayonne, New Jersey in 1930 New Jersey - Bayonne - NARA - 68144599 (cropped).jpg
Oil leak and subsequent fire at the Standard Oil refinery in Bayonne, New Jersey in 1930

An industrial fire is a type of industrial disaster involving a conflagration which occurs in an industrial setting. Industrial fires often, but not always, occur together with explosions. They are most likely to occur in facilities where there is a lot of flammable material present. Such material can include petroleum, petroleum products such as petrochemicals, or natural gas. Processing flammable materials such as hydrocarbons in units at high temperature and/or high pressure makes the hazards more severe. Facilities with such combustible material include oil refineries, tank farms (oil depots), natural gas processing plants, and chemical plants, particularly petrochemical plants. Such facilities often have their own fire departments for firefighting. Sometimes dust or powder are vulnerable to combustion and their ignition can cause dust explosions. Severe industrial fires have involved multiple injuries, loss of life, costly financial loss, and/or damage to the surrounding community or environment.

Process Hazard Analysis (PHA) is a set of organized and systematic assessments of the potential hazards for an industrial process used to analyze potential causes and consequences of fires, explosions, releases of toxic or flammable chemicals, and major spills of hazardous chemicals.

Industrial fires, like the 2012 Amuay refinery explosion and the Standard Oil refinery fire in 1930, serve as stark reminders of the inherent risks associated with industrial activities involving flammable materials [1] [2] . These incidents underscore the importance of implementing robust safety measures and protocols to prevent and mitigate such disasters in industrial settings.

Process Hazard Analysis (PHA) plays a critical role in enhancing industrial safety by systematically evaluating the potential hazards associated with industrial processes [3] . By identifying and analyzing the causes and consequences of fires, explosions, chemical releases, and spills, PHA enables industrial facilities to proactively address vulnerabilities and implement preventive measures to reduce the likelihood of accidents.

In facilities where flammable materials are processed at high temperatures and pressures, the risk of industrial fires and explosions is heightened. Oil refineries, chemical plants, and other industrial sites handling combustible substances must adhere to stringent safety standards and regulations to safeguard workers, the surrounding community, and the environment from the devastating impacts of industrial disasters. [4] [5] Safety measures and regulations vary depending on the local, state or federal agency jurisdiction. [6]

Moreover, the presence of on-site fire departments in industrial facilities underscores the proactive approach taken by industry stakeholders to enhance emergency response capabilities and minimize the impact of potential incidents. Through regular training, drills, and simulation exercises, these fire departments are better equipped to swiftly contain and extinguish fires, thereby reducing the risk of widespread damage and loss.

As industrial processes evolve and technologies advance, continuous vigilance, adherence to best practices, and a strong commitment to safety remain paramount in mitigating the risks associated with industrial fires and ensuring the well-being of workers and the broader community. The integration of PHA into industrial safety management practices serves as a proactive measure to enhance preparedness, identify vulnerabilities, and promote a culture of safety across industrial operations.

  1. Mishra, Kirti Bhushan; Wehrstedt, Klaus-Dieter; Krebs, Holger (March 2014). "Amuay refinery disaster: The aftermaths and challenges ahead". Fuel Processing Technology. 119: 198–203. doi:10.1016/j.fuproc.2013.10.025.
  2. "1930 Elizabeth, New Jersey refinery explosion... - RareNewspapers.com". www.rarenewspapers.com. Retrieved 2024-10-29.
  3. Hyatt, Nigel (2018-10-03). Guidelines for Process Hazards Analysis (PHA, HAZOP), Hazards Identification, and Risk Analysis (0 ed.). CRC Press. doi:10.1201/9781315220376. ISBN   978-1-315-22037-6.
  4. "Workplace Safety and Health". DOL. Retrieved 2024-10-30.
  5. Burclaff, Natalie. "Research Guides: Oil and Gas Industry: A Research Guide: U.S. Regulatory Agencies". guides.loc.gov. Retrieved 2024-10-30.
  6. Kays, Thomas A. Farr, Hannah. "Nelson Mullins - Understanding the Difference between Federal OSHA and State Plans". Nelson Mullins Riley & Scarborough LLP. Retrieved 2024-10-30.{{cite web}}: CS1 maint: multiple names: authors list (link)

Related Research Articles

<span class="mw-page-title-main">Ammonium nitrate</span> Chemical compound with formula NH4NO3

Ammonium nitrate is a chemical compound with the formula NH4NO3. It is a white crystalline salt consisting of ions of ammonium and nitrate. It is highly soluble in water and hygroscopic as a solid, although it does not form hydrates. It is predominantly used in agriculture as a high-nitrogen fertilizer.

<span class="mw-page-title-main">Oil refinery</span> Facility that processes crude oil

An oil refinery or petroleum refinery is an industrial process plant where petroleum is transformed and refined into products such as gasoline (petrol), diesel fuel, asphalt base, fuel oils, heating oil, kerosene, liquefied petroleum gas and petroleum naphtha. Petrochemical feedstock like ethylene and propylene can also be produced directly by cracking crude oil without the need of using refined products of crude oil such as naphtha. The crude oil feedstock has typically been processed by an oil production plant. There is usually an oil depot at or near an oil refinery for the storage of incoming crude oil feedstock as well as bulk liquid products. In 2020, the total capacity of global refineries for crude oil was about 101.2 million barrels per day.

<span class="mw-page-title-main">Critical infrastructure</span> Infrastructure important to national security

Critical infrastructure, or critical national infrastructure (CNI) in the UK, describes infrastructure considered essential by governments for the functioning of a society and economy and deserving of special protection for national security. Critical infrastructure has traditionally been viewed as under the scope of government due to its strategic importance, yet there's an observable trend towards its privatization, raising discussions about how the private sector can contribute to these essential services.

<span class="mw-page-title-main">Flixborough disaster</span> Industrial accident in North Lincolnshire, England (1974)

The Flixborough disaster was an explosion at a chemical plant close to the village of Flixborough, North Lincolnshire, England, on Saturday, 1 June 1974. It killed 28 and seriously injured 36 of the 72 people on site at the time. The casualty figures could have been much higher if the explosion had occurred on a weekday, when the main office area would have been occupied. A contemporary campaigner on process safety wrote "the shock waves rattled the confidence of every chemical engineer in the country".

Process Safety Managementof Highly Hazardous Chemicals is a regulation promulgated by the U.S. Occupational Safety and Health Administration (OSHA). It defines and regulates a process safety management (PSM) program for plants using, storing, manufacturing, handling or carrying out on-site movement of hazardous materials above defined amount thresholds. Companies affected by the regulation usually build a compliant process safety management system and integrate it in their safety management system. Non-U.S. companies frequently choose on a voluntary basis to use the OSHA scheme in their business.

<span class="mw-page-title-main">Chemical plant</span> Industrial process plant that manufactures chemicals

A chemical plant is an industrial process plant that manufactures chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials. Chemical plants use specialized equipment, units, and technology in the manufacturing process. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies that have similarities to chemical plant technology such as fluid systems and chemical reactor systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant.

<span class="mw-page-title-main">Texas City refinery explosion</span> 2005 deadly refinery accident

The Texas City refinery explosion occurred on March 23, 2005, when a flammable hydrocarbon vapor cloud ignited and violently exploded at the isomerization process unit of the BP oil refinery in Texas City, Texas, killing 15 workers, injuring 180 others and severely damaging the refinery. All the fatalities were contractors working out of temporary buildings located close to the unit to support turnaround activities. Property loss was $200 million. When including settlements, costs of repairs, deferred production, and fines, the explosion is the world's costliest refinery accident.

<span class="mw-page-title-main">Electrical equipment in hazardous areas</span> Electrical equipment in places where fire or explosion hazards may exist

In electrical and safety engineering, hazardous locations are places where fire or explosion hazards may exist. Sources of such hazards include gases, vapors, dust, fibers, and flyings, which are combustible or flammable. Electrical equipment installed in such locations can provide an ignition source, due to electrical arcing, or high temperatures. Standards and regulations exist to identify such locations, classify the hazards, and design equipment for safe use in such locations.

<span class="mw-page-title-main">1998 Esso Longford fire</span> 1998 industrial disaster in Victoria, Australia

On 25 September 1998 a catastrophic accident occurred at the Esso natural gas plant in Longford, Victoria, Australia. A pressure vessel ruptured resulting in a serious jet fire, which escalated to a conflagration extending to a large part of the plant. Fires lasted two days before they were finally extinguished.

<span class="mw-page-title-main">Combustibility and flammability</span> Ability to easily ignite in air at ambient temperatures

A combustible material is a material that can burn in air under certain conditions. A material is flammable if it ignites easily at ambient temperatures. In other words, a combustible material ignites with some effort and a flammable material catches fire immediately on exposure to flame.

<span class="mw-page-title-main">Dust explosion</span> Rapid combustion of fine particles suspended in the air

A dust explosion is the rapid combustion of fine particles suspended in the air within an enclosed location. Dust explosions can occur where any dispersed powdered combustible material is present in high-enough concentrations in the atmosphere or other oxidizing gaseous medium, such as pure oxygen. In cases when fuel plays the role of a combustible material, the explosion is known as a fuel-air explosion.

<span class="mw-page-title-main">West Pharmaceutical Services explosion</span> U.S. industrial disaster

The West Pharmaceutical Plant explosion was an industrial disaster that occurred on January 29, 2003, at the West Pharmaceutical Plant in Kinston, North Carolina, United States. Six people were killed and thirty-six people were injured when a large explosion ripped through the facility. Two firefighters were injured in the subsequent blaze. The disaster occurred twelve years and 170 miles (270 km) from the 1991 Hamlet chicken processing plant fire, North Carolina's second-worst industrial disaster.

Process safety is an interdisciplinary engineering domain focusing on the study, prevention, and management of large-scale fires, explosions and chemical accidents in process plants or other facilities dealing with hazardous materials, such as refineries and oil and gas production installations. Thus, process safety is generally concerned with the prevention of, control of, mitigation of and recovery from unintentional hazardous materials releases that can have a serious effect to people, plant and/or the environment.

<span class="mw-page-title-main">2008 Georgia Imperial Sugar refinery explosion</span> Fatal industrial disaster

On 7 February 2008, fourteen people were killed and thirty-six injured during a dust explosion at a refinery owned by Imperial Sugar in Port Wentworth, Georgia, United States. Dust explosions had been an issue of concern among U.S. authorities since three fatal accidents in 2003, with efforts made to improve safety and reduce the risk of reoccurrence.

A process hazard analysis (PHA) (or process hazard evaluation) is an exercise for the identification of hazards of a process facility and the qualitative or semi-quantitative assessment of the associated risk. A PHA provides information intended to assist managers and employees in making decisions for improving safety and reducing the consequences of unwanted or unplanned releases of hazardous materials. A PHA is directed toward analyzing potential causes and consequences of fires, explosions, releases of toxic or flammable chemicals and major spills of hazardous chemicals, and it focuses on equipment, instrumentation, utilities, human actions, and external factors that might impact the process. It is one of the elements of OSHA's program for Process Safety Management.

A boilover is an extremely hazardous phenomenon in which a layer of water under a pool fire starts boiling, which results in a significant increase in fire intensity accompanied by violent expulsion of burning fluid to the surrounding areas. Boilover can only occur if the liquid fluid is a mixture of different chemical species with sufficiently diverse boiling points, although a so-called thin-layerboilover – a far less hazardous phenomenon – can arise from any water-immiscible liquid fuel. Crude oil, kerosene and some diesel oils are examples of fuels giving rise to boilover.

<span class="mw-page-title-main">Hazard</span> Situation or object that can cause damage

A hazard is a potential source of harm. Substances, events, or circumstances can constitute hazards when their nature would potentially allow them to cause damage to health, life, property, or any other interest of value. The probability of that harm being realized in a specific incident, combined with the magnitude of potential harm, make up its risk. This term is often used synonymously in colloquial speech.

<span class="mw-page-title-main">Williams Olefins Plant explosion</span>

The Williams Olefins Plant explosion occurred on June 13, 2013 at a petrochemical plant located in Geismar, an unincorporated and largely industrial area 20 miles (32 km) southeast of Baton Rouge, Louisiana. Two workers were killed and 114 injured. The U.S. Occupational Safety and Health Administration (OSHA) and the U.S. Chemical Safety and Hazard Investigation Board (CSB) launched investigations to determine how and why the heat exchanger failed. The Chemical Safety Board concluded that a standby heat exchanger had filled with hydrocarbon. This heat exchanger was isolated from its pressure relief; shortly after the heat exchanger was heated with hot water, the hydrocarbon flashed to vapor, ruptured the heat exchanger, and exploded.

<span class="mw-page-title-main">Domino effect accident</span> Accident that causes one or more consequential accidents

A domino effect accident is an accident in which a primary undesired event sequentially or simultaneously triggers one or more secondary undesired events in nearby equipment or facilities, leading to secondary accidents more severe than the primary event. Thus, a domino effect accident is actually a chain of multiple events, which can be likened to a falling row of dominoes. The term knock-on accident is also used.

An explosion at the ARCO Chemical (ACC) Channelview, Texas petrochemical plant killed 17 people and injured five others on July 5, 1990. It was one of the deadliest industrial disasters in the history of the Greater Houston area.