Injective hull

Last updated

In mathematics, particularly in algebra, the injective hull (or injective envelope) of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in ( Eckmann & Schopf 1953 ).

Contents

Definition

A module E is called the injective hull of a module M, if E is an essential extension of M, and E is injective. Here, the base ring is a ring with unity, though possibly non-commutative.

Examples

Properties

Ring structure

In some cases, for R a subring of a self-injective ring S, the injective hull of R will also have a ring structure. [2] For instance, taking S to be a full matrix ring over a field, and taking R to be any ring containing every matrix which is zero in all but the last column, the injective hull of the right R-module R is S. For instance, one can take R to be the ring of all upper triangular matrices. However, it is not always the case that the injective hull of a ring has a ring structure, as an example in ( Osofsky 1964 ) shows.

A large class of rings which do have ring structures on their injective hulls are the nonsingular rings. [3] In particular, for an integral domain, the injective hull of the ring (considered as a module over itself) is the field of fractions. The injective hulls of nonsingular rings provide an analogue of the ring of quotients for non-commutative rings, where the absence of the Ore condition may impede the formation of the classical ring of quotients. This type of "ring of quotients" (as these more general "fields of fractions" are called) was pioneered in ( Utumi 1956 ), and the connection to injective hulls was recognized in ( Lambek 1963 ).

Uniform dimension and injective modules

An R module M has finite uniform dimension (=finite rank) n if and only if the injective hull of M is a finite direct sum of n indecomposable submodules.

Generalization

More generally, let C be an abelian category. An object E is an injective hull of an object M if ME is an essential extension and E is an injective object.

If C is locally small, satisfies Grothendieck's axiom AB5 and has enough injectives, then every object in C has an injective hull (these three conditions are satisfied by the category of modules over a ring). [4] Every object in a Grothendieck category has an injective hull.

See also

Notes

  1. Walther, Uli. "Injective Modules" (PDF). p. 11.
  2. Lam 1999, p. 78–80.
  3. Lam 1999, p. 366.
  4. Section III.2 of ( Mitchell 1965 )

Related Research Articles

In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.

In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal amongst all proper ideals. In other words, I is a maximal ideal of a ring R if there are no other ideals contained between I and R.

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type.

In mathematics, specifically in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an nth multiple for each positive integer n. Divisible groups are important in understanding the structure of abelian groups, especially because they are the injective abelian groups.

In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.

In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion free modules. Formally, a module M over a ring R is flat if taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.

In mathematics, specifically abstract algebra, an Artinian module is a module that satisfies the descending chain condition on its poset of submodules. They are for modules what Artinian rings are for rings, and a ring is Artinian if and only if it is an Artinian module over itself. Both concepts are named for Emil Artin.

In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient. The structure of Artinian semisimple rings is well understood by the Artin–Wedderburn theorem, which exhibits these rings as finite direct products of matrix rings.

In mathematics, specifically module theory, given a ring R and an R-module M with a submodule N, the module M is said to be an essential extension of N if for every submodule H of M,

In mathematics, a Prüfer domain is a type of commutative ring that generalizes Dedekind domains in a non-Noetherian context. These rings possess the nice ideal and module theoretic properties of Dedekind domains, but usually only for finitely generated modules. Prüfer domains are named after the German mathematician Heinz Prüfer.

In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M.

In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring.

Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.

In abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of M is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself.

In mathematics, especially ring theory, the class of Frobenius rings and their generalizations are the extension of work done on Frobenius algebras. Perhaps the most important generalization is that of quasi-Frobenius rings, which are in turn generalized by right pseudo-Frobenius rings and right finitely pseudo-Frobenius rings. Other diverse generalizations of quasi-Frobenius rings include QF-1, QF-2 and QF-3 rings.

In the branches of abstract algebra known as ring theory and module theory, each right (resp. left) R-module M has a singular submodule consisting of elements whose annihilators are essential right (resp. left) ideals in R. In set notation it is usually denoted as . For general rings, is a good generalization of the torsion submodule tors(M) which is most often defined for domains. In the case that R is a commutative domain, .

In abstract algebra, specifically in module theory, a dense submodule of a module is a refinement of the notion of an essential submodule. If N is a dense submodule of M, it may alternatively be said that "N ⊆ M is a rational extension". Dense submodules are connected with rings of quotients in noncommutative ring theory. Most of the results appearing here were first established in, and.

This is a glossary of commutative algebra.

References