Innovation in Malaysia

Last updated

Innovation in Malaysia describes trends and developments in innovation in Malaysia.

Contents

In 2015, the Najib Razak coalition government estimated that 6% annual growth would be necessary to reach high-income status by 2020. [1] It's more than the average for the previous decade and average for 2016-2019(4.8%), according to the World Bank.

Malaysia's National Transformation Policy 2050 (2017) assigned a greater role than previously to science and technology in all sectors and mandated a shift towards the use of ‘green’ energy, such as solar, biomass and wind, to drive the country's economic transformation to 2050. To deliver this agenda, the government developed an action plan for science, technology, engineering, mathematics (STEM) and medicine as part of its 2018 budget. The incoming administration in 2018 did not change this overall policy direction. Since 2018, the administration has acted on its predecessor’s recommendations to raise the number of students enrolled in STEM courses and foster uptake of Industry 4.0 technologies like nanotechnology. Over 2016–2019, the direct contribution of nanotechnology to the economy was estimated at MYR 3.5 billion (ca US$ 800 million). [2] The volume of scientific publications on nanotechnology rose by 14% over the 2012–2019 period. Malaysia contributed 0.64% of global output in this field in 2011 and 0.67% in 2019. [3]

Contribution of research and innovation to development

Between 2008 and 2012, research spending rose from 0.79% to 1.13% of GDP. GDP grew steadily over the same period. Malaysia plans to raise this ratio to 2% of GDP by 2020. [1] [ needs update ] One in five (22%) of Malaysian researchers worked in the business enterprise sector in 2016, according to the same source.[ citation needed ]

Although research spending increased to 1.44% of GDP in 2016, the government has since trimmed or eliminated several funding schemes, including the Long Term Research Grant Scheme, the Transcendental Research Grant Scheme and the Fundamental Research Grant Scheme for universities. [3]

In February 2021, the Ministry of Science, Technology and Innovation launched the Malaysia Grand Challenge to encourage disruptive innovation and reduce reliance on foreign technologies. This body allocates funds to start-ups and SMEs through the following five new mechanisms to help them commercialize their products and services: the Strategic Research Fund, Technology Development Funds 1 and 2 (TeD 1 and TeD 2), a Bridging Fund and an Applied Innovation Fund (Yunus).[ citation needed ]

GDP per capita and research expenditure as a share of GDP in Malaysia and other countries, 2010-2013 (average). Source: UNESCO Science Report: towards 2030 (2015), Figure 12.4 GDP per capita and GERD GDP ratio in the Black Sea countries, 2010-2013 (average).svg
GDP per capita and research expenditure as a share of GDP in Malaysia and other countries, 2010–2013 (average). Source: UNESCO Science Report: towards 2030 (2015), Figure 12.4

Research and development (R&D) are conducted predominantly in large-scale enterprises in the electronics, automotive and chemical industries. Small and medium-sized enterprises, which make up 97% of all private firms, contribute little. This is because most of the small and medium-sized enterprises that work as subcontractors for multinational firms have remained confined to the role of original equipment manufacturers. In order to help these small and medium-sized enterprises (SMEs) access the requisite knowledge, skills and finance that will enable them to participate in original design and original brand manufacturing, the government has adopted a strategy of connecting SMEs to the incubation facilities in the country's numerous science and technology parks. [1] [4] [5]

Foreign multinational firms are generally engaged in more sophisticated R&D than national firms. [3] However, even the R&D conducted by foreign firms tends to be confined to process and product improvements, rather than pushing back the international technology frontier. Moreover, foreign multinationals are heavily dependent on their parent and subsidiary firms based outside Malaysia for personnel, owing to the lack of qualified human capital and research universities within Malaysia to call upon. [1]

A group of ten multinationals have decided to address these shortcomings. In order to satisfy the research needs of the electrical and electronics industries, which employ nearly 5 000 research scientists and engineers in Malaysia, Agilent Technologies, Intel, Motorola Solutions, Silterra and six other multinationals established a platform in 2012 to promote Collaborative Research in Engineering, Science and Technology (CREST [6] ) among industry, academia and the government. These multinational firms generate close to MYR 25 billion (circa US$6.9 billion) in annual revenue and spend nearly MYR 1.4 billion on research and development. They utilized government research grants extensively since the government decided in 2005 to extend these grants beyond domestic firms to multinational beneficiaries. Besides research, the focus has been on talent development, the ultimate aim being to help the industry add greater value to its products. [1]

A total of RYM 1.1 billion (ca US$ 270 million) was allocated in the 2020 budget to five economic corridors to support projects such as the Chuping Valley Industrial Area and Kuantan Port. [3]

Challenges for high-tech industries

Since the launch of export-oriented industrialization in 1971, multinational corporations have relocated to Malaysia, fueling a rapid expansion in manufactured exports that has helped turn the country into one of the world's leading exporters of electrical and electronic goods. Today, Malaysia is highly integrated in global trade, with manufacturing contributing over 60% of its exports. Half of these exports (49%) were destined for the East Asian market in 2010, compared to just 29% in 1980. The main destinations in East Asia are China, Indonesia, the Republic of Korea, Philippines, Singapore and Thailand. In 2013, Malaysia accounted for 6.6% of world exports of integrated circuits and other electronic components, according to the World Trade Organization. [1] [7]

Over the past 15 years or so, the share of manufacturing in GDP has gradually declined as a natural consequence of the concomitant growth in services as a corollary of greater development. Modern manufacturing and services are deeply intertwined, as high-tech industries often have a massive services component. The development of the services sector is thus not, in itself, a cause for concern. [1]

High-tech manufacturing has stagnated in absolute terms in recent years and its share of global added value has slipped from 0.8% in 2007 to 0.6% in 2013. Over the same period, Malaysia's global share of high-tech exports (goods and services) contracted from 4.6% to 3.5%, according to the World Trade Organization. The contribution of high-tech industries to national GDP has likewise dropped. [1] [7] This suggests that the shift towards services has neglected the development of high-tech services. Moreover, although the volume of manufacturing has not declined, less value is being added to manufactured goods than before. As a consequence, Malaysia's trade surplus declined from 144 529 ringgits (MYR) in 2009 to MYR 91 539 in 2013 and Malaysia has been losing ground in high-tech exports. This means that Malaysian high-tech industries are contributing much less to manufactured exports than they did a decade ago. Even though patent applications with the Malaysian patent office have increased steadily over the years, there still seems to be little return on investment in R&D. Domestic applications also seem to be of lower quality than those of foreign applicants, with a cumulative grants-to-application ratio of 18% between 1989 and 2014, against 53% for foreign applicants over the same period. [1]

In addition, academic or public research organizations in Malaysia appear to have a limited ability to translate research into intellectual property rights. The Malaysian Institute of Micro-electronic Systems, Malaysia's forefront public R&D institute, which was corporatized in 1992, contributed 45–50% of Malaysia's patents filed in 2010 but the low citations that have emerged from those patents suggest that the commercialization rate is low. [1]

Rate of return on research

While discovery and patenting are crucial for Malaysia's export-oriented competitiveness and growth strategy, there still seems to be little return on investment in research and development. The low commercialization rate can largely be attributed to a lack of university–industry collaboration, rigidities in research organizations and problems with coordinating policies. Universities seem to confine the commercialization of their research results to specific areas, such as health and information and communication technologies. In 2010, the government established the Malaysian Innovation Agency to spur the commercialization of research. [1] [8] [9]

Five years after its inception, the Malaysian Innovation Agency had made a limited impact on commercialization thus far, owing to the unclear delineation of its role in relation to the Ministry of Science, Technology and Innovation and the agency's limited resources. Nevertheless, there is some evidence to suggest that the agency is beginning to play a catalytic role in driving commercialization and an innovative culture, especially as regards innovation beyond the hardware industry, which is where firms offering services, such as airline services, are active. [1]

One public–private funding model involves the Malaysian Palm Oil Board, a public body born of the merger of the Palm Oil Research Institute of Malaysia and the Palm Oil Registration and Licensing Authority in 2000, by act of parliament. Through a tax levied on every tonne of palm oil and palm kernel oil produced in the country, the oil palm industry funds many of the research grants provided by the Malaysian Palm Oil Board. These grants amounted to MYR 2.04 billion (circa US$565 million) between 2000 and 2010. The Malaysian Palm Oil Board supports innovation in areas such as biodiesel and alternate uses for palm biomass and organic waste. Its research into biomass has led to the development of wood and paper products, fertilizers, bio-energy sources, polyethylene sheeting for use in vehicles and other products made of palm biomass. [1]

Development of endogenous research

The government is keen to develop endogenous research, in order to reduce the country's reliance on industrial research undertaken by foreign multinational companies. By financing graduate study, the government helped to double enrolment in PhD programs between 2007 and 2010 to 22,000. It has also introduced incentives to encourage expatriates to return to Malaysia through the Returning Expert Programme and plans to become the sixth-largest destination for international university students by 2020. It is hoped that the creation of the ASEAN Economic Community in 2015 will encourage scientific co-operation among member countries. [1] [10]

The creation of these research universities resulted from the government's higher education strategy of 2006. A parallel goal of the strategy was to raise government spending on higher education. By financing graduate students, for instance, the government doubled enrolment in doctoral programmes between 2007 and 2010. According to the UNESCO Institute for Statistics, the number of full-time equivalent (FTE) researchers in Malaysia tripled between 2008 and 2012 (from 16,345 to 52,052), carrying the researcher density to 1 780 per million inhabitants in 2012, which was well above the global average for 2013 (1,083 per million). [1] By 2016, there were 2,397 researchers per million inhabitants in Malaysia, almost double the global average (1,368 per million). [3]

Introducing a requirement for universities to collaborate with industry would be a means of supporting the commercialization of research results to boost the country's innovation performance. [3]

Digital innovation policy

The Ministry of International Trade and Industry published its Industry4WRD: National Policy on Industry 4.0 in 2018. This policy sets out to use digitalization to transform Malaysia’s manufacturing sector and related service industries. One goal is to adopt smart manufacturing. Targets include raising labour productivity by 30% over 2016–2025; raising the value of the manufacturing sector from about US$ 58 billion to US$ 90 billion; and expanding the share of highly skilled workers in the manufacturing workforce from 18% to 35%. One notable initiative is the Smart Manufacturing Experience Centre, announced in mid-2020 by the Standard and Industrial Research Institute of Malaysia. Launched in 2021, the center supports SMEs in developing their strategies and capacities for Industry 4.0, by providing access to existing platforms and technologies. In this way, it should provide a ‘test bed’ for companies to trial their innovations. The center will also train institutes of higher learning, as well as the private sector, in applications of Industry 4.0 technologies. [3]

In July 2020, the Malaysia Digital Economy Corporation launched the Smart Automation Grant to help firms digitalize their business processes. This matching grant targets firms in the services sector, including wholesale and retail, which pay at least half of the total cost of their digitalization project. In February 2021, 66 SMEs and mid-tier firms in traditional sectors such as tourism, real estate, education, and healthcare system were awarded the Smart Automation Grant as part of Malaysian government’s National Economic Recovery Plan (Penjana) in the wake of 2020-21 political crisis and COVID-19 pandemic. [3]

Malaysia’s 2020 budget introduced instruments to boost the e-commerce, such as an e-wallet and cashless payment system (Govt of Malaysia, 2019b). A strategy on AI was reportedly under the development in 2021. [3]

Innovation to tackle sustainability challenges

[ relevant? ]

Since about 2010, policy debates have centered on the need to address factors such as low farm productivity, increasing health-related problems, natural disasters, environmental problems and monetary inflation. In 2014, the government launched transdisciplinary research grants with the objective of including societal benefits among the performance criteria at Malaysia's research universities and providing incentives to promote science in support of poverty alleviation and sustainable development. [1]

On 16 November 2016, Malaysia ratified the Paris Agreement. According to the World Resources Institute, Malaysia contributed about 0.9% of global greenhouse gas emissions in 2012, taking into account land-use changes and forestry. 'Although Malaysia remains committed to reducing its carbon emissions by 40% by 2020 over 2012 levels, as pledged by the Malaysian prime minister at the climate summit in Warsaw in 2013, it faces growing sustainability challenges’. [1] For instance, in January 2014, Selangor, the most developed of Malaysia's federated states, experienced water shortages. These were caused by high pollution levels and the drying of reservoirs as a consequence of overuse. Land clearing and deforestation are still major concerns, due to landslides and population displacements. Malaysia is the world's second-biggest producer of palm oil. [1]

Palm oil exports represent the third-largest category of Malaysian exports after fossil fuels (petroleum and gas) and electronics. Approximately 58% of Malaysia was forested in 2010. With the government having committed to preserving at least half of all land as primary forest, Malaysia has little latitude to expand the extent of land already under cultivation. Rather, it will need to focus on improving productivity. This will necessitate innovation. [1] [11]

The four out of ten Malaysians in the lowest income bracket are also increasingly exposed to social and environmental risks. The incidence of dengue increased by 90% in 2013 over the previous year, for instance, with 39,222 recorded cases, in a trend which may be linked to deforestation and/or climate change. [1]

Over 2018–2020, the government launched four large-scale solar projects with capacity of 500–1 228 MW, two of which were operational by 2020. Contractors hired as part of all three projects were bound to include at least one national player. In 2019, the Sustainability Energy Development Authority began implementing the MySuria programme with the intention of installing 3-kW solar photovoltaic systems in 1 620 households from the bottom-40% income group. [3]

In 2018, the government launched a campaign to eliminate the use of plastics and actively support the recycling of biowaste. The government also committed to reviewing the construction of new dams, owing to environmental concerns. [3]

Sources

Definition of Free Cultural Works logo notext.svg  This article incorporates text from a free content work. Licensed under CC-BY-SA IGO 3.0. Text taken from UNESCO Science Report: towards 2030 , UNESCO Publishing.

See also

Related Research Articles

<span class="mw-page-title-main">Economy of Cambodia</span>

The economy of Cambodia currently follows an open market system and has seen rapid economic progress in the last decade. Cambodia had a gross domestic product (GDP) of $28.54 billion in 2022. Per capita income, although rapidly increasing, is low compared with most neighboring countries. Cambodia's two largest industries are textiles and tourism, while agricultural activities remain the main source of income for many Cambodians living in rural areas. The service sector is heavily concentrated on trading activities and catering-related services. Recently, Cambodia has reported that oil and natural gas reserves have been found off-shore.

<span class="mw-page-title-main">Economy of Malaysia</span>

The economy of Malaysia is the sixth largest in Southeast Asia and the 36th largest in the world in terms of nominal GDP. When measured by purchasing power parity, its GDP climbs to the 30th largest. Malaysia is forecasted to have a nominal GDP nearly half a trillion US$ by the end of 2024. The labour productivity of Malaysian workers is the third highest in ASEAN and significantly higher than Indonesia, Vietnam and The Philippines. The 2024 Global Competitiveness Report ranked Malaysian economy the 34th most competitive country economy in the world.

<span class="mw-page-title-main">Research and development</span> General term for activities in connection with corporate or governmental innovation

Research and development is the set of innovative activities undertaken by corporations or governments in developing new services or products and carrier science computer marketplace e-commerce, copy center and service maintenance troubleshooting software, hardware improving existing ones. Research and development constitutes the first stage of development of a potential new service or the production process.

<span class="mw-page-title-main">Science and technology in Israel</span> National research, development and proficience of Israel

Science and technology in Israel is one of the country's most developed sectors. Israel spent 4.3% of its gross domestic product (GDP) on civil research and development in 2015, the highest ratio in the world. In 2019, Israel was ranked the world's fifth most innovative country by the Bloomberg Innovation Index. It ranks thirteenth in the world for scientific output as measured by the number of scientific publications per million citizens. In 2014, Israel's share of scientific articles published worldwide (0.9%) was nine times higher than its share of the global population (0.1%).

<span class="mw-page-title-main">Science and technology in Brazil</span>

Science and technology in Brazil has entered the international arena in recent decades. The central agency for science and technology in Brazil is the Ministry of Science and Technology, which includes the CNPq and Finep. This ministry also has a direct supervision over the National Institute for Space Research, the National Institute of Amazonian Research, and the National Institute of Technology (Brazil). The ministry is also responsible for the Secretariat for Computer and Automation Policy, which is the successor of the SEI. The Ministry of Science and Technology, which the Sarney government created in March 1985, was headed initially by a person associated with the nationalist ideologies of the past. Although the new minister was able to raise the budget for the science and technology sector, he remained isolated within the government and had no influence on policy making for the economy.

The pharmaceutical industry in India was valued at an estimated US$42 billion in 2021 and is estimated to reach $130 billion by 2030. India is the world's largest provider of generic medicines by volume, with a 20% share of total global pharmaceutical exports. It is also the largest vaccine supplier in the world by volume, accounting for more than 60% of all vaccines manufactured in the world. Indian pharmaceutical products are exported to various regulated markets including the US, UK, European Union and Canada.

<span class="mw-page-title-main">Science and technology in Turkey</span> Overview of science and technology in Turkey

Science and technology in Turkey is centrally planned by TÜBİTAK and in responsibility of universities and research institutes. Research and development activities in Turkey show a significant jump in recent years. Turkey was ranked 37th in the Global Innovation Index in 2023, and has increased its ranking considerably since 2011, where it was ranked 65th. Turkey boasts over 80 technoparks where around 6,000 national and multinational companies engage in R&D activities. Turkish Academy of Sciences supports scientists, scientific studies, and making science policies. TAEK is the country's official nuclear energy institution, focused on academic research and the development and implementation of peaceful nuclear technology.

<span class="mw-page-title-main">Science and technology in Morocco</span>

Science and technology in Morocco has significantly developed in recent years. The Moroccan government has been implementing reforms to encourage scientific research in the Kingdom. While research has yet to acquire the status of a national priority in Morocco, the country does have major assets that could transform its R&D sector into a key vehicle for development. The industry remains dominated by the public sector, with the universities employing 58% of researchers. Morocco's own evaluation of its national research system – carried out in 2003 – revealed that the country has a good supply of well trained high quality human resources and that some laboratories are of very high quality. However, the greatest gap at that point of time lied in the link between research and innovation. The educational qualifications of Moroccan researchers have increased significantly since the early 1990s. The University of Al-Karaouine is considered the oldest continuously operating academic degree-granting university in the world.

The Malaysian federal budget for 2015 fiscal year was presented to the Dewan Rakyat by Prime Minister and Minister of Finance, Najib Razak on Friday, 10 October 2014.

Science and technology in Botswana examines recent trends and developments in science, technology and innovation policy in this country. The Republic of Botswana was one of the first countries of the Southern African Development Community (SADC) to adopt a science and technology policy in 1998. This was later updated in 2011.

Malawi is one of the least developed countries in the world. But it spends 1% of its gross domestic product (GDP) on research and development (R&D), making it have one of the highest ratios in Africa. The country has 93% of its population still lacking access to electricity, 47% of whom have improved sanitation, and one in four adults lacks any form of family planning.

This article examines trends and developments in science and technology in Zimbabwe since 2009.

Science and technology in Armenia describes trends and developments in science, technology and innovation policy and governance in Armenia.

Science and technology in Kazakhstan – government policies to develop science, technology and innovation in Kazakhstan.

Science and technology in Uzbekistan examines government efforts to develop a national innovation system and the impact of these policies.

Science and technology in Kyrgyzstan examines government efforts to develop a national innovation system and the impact of these policies.

Science and technology in Tajikistan examines government efforts to develop a national innovation system and the impact of these policies.

This article summarizes the development of science and technology in Cambodia from a policy perspective.

The main managing agency responsible for science and technology (S&T) in Vietnam is the Ministry of Science and Technology (MOST). MOST's responsibilities include scientific research, technology development and innovation activities; development of science and technology potentials; intellectual property; standards, metrology and quality control; atomic energy, radiation and nuclear safety; and state management on public services in fields under the Ministry’s management as stipulated by law.

<span class="mw-page-title-main">Economy of Sarawak</span>

The economy of Sarawak is the fourth-largest of the states of Malaysia, making up 9.3% of the Malaysian gross domestic product (GDP) in 2022. Meanwhile, Sarawak is home to 7.9% of the Malaysian population based on the 2020 census.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Rasiah, Rajah; Chandran, V.G.R. (2015). Malaysia. In: UNESCO Science Report: towards 2030 (PDF). Paris: UNESCO Publishing. pp. 676–691. ISBN   978-92-3-100129-1.
  2. Dardak, R. A.; Rahman, R.A. (23 November 2020). "Contribution of nanotechnology to food security in Malaysia". Food and Fertilizer Technology Center for the Asian and Pacific Region (FFTC) Agricultural Policy Platform.
  3. 1 2 3 4 5 6 7 8 9 10 11 Scott-Kemmis, Don; Intarakumnerd, Patarapong; Rasiah, Rajah; Amaradasa, Ranasinghe (2021). Southeast Asia and Oceania. In: UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. pp. 674–715. ISBN   978-92-3-100450-6.
  4. Rasiah, R.; Yap, X.Y.; Salih, K. (2015). Provincializing Economic Development: Technological Upgrading in the Integrated Circuits Industry in Malaysia.
  5. Rasiah, R.; Yap, X.Y. and S. Yap (2015). "Sticky spots on slippery slopes: the development of the integrated circuits industry in emerging East Asia". Institutions and Economies. 7: 52–79.
  6. "Collaborative Research in Engineering, Science and Technology".
  7. 1 2 World Trade Organization (2014). International Trade Statistics. Geneva: World Trade Organization.
  8. Chandran, V.G.R.; Wong, C.V. (2011). "Patenting activities by developing countries: the case of Malaysia". World Patent Information. 33: 51–57. doi:10.1016/j.wpi.2010.01.001.
  9. Thiruchelvam, K.; Ng, B.K.; Wong, C.Y. (2011). An overview of Malaysia's national innovation system: policies, institutions and performance. In: National Innovation System in Selected Asian Countries. Bangkok: Chulalongkorn University Press.
  10. UNESCO Institute for Statistics (2014). Higher Education in Asia: Expanding Up, Expanding Out (PDF). Montreal: UNESCO.
  11. Morales, Alex (2010). "Malaysia has little room for palm oïl expansion, minister says. 18 November". Bloomberg News Online (restricted access).