Interactions of actors theory

Last updated

Interactions of actors theory is a theory developed by Gordon Pask and Gerard de Zeeuw. It is a generalisation of Pask's earlier conversation theory: The chief distinction being that conversation theory focuses on analysing the specific features that allow a conversation to emerge between two participants, whereas interaction of actor's theory focuses on the broader domain of conversation in which conversations may appear, disappear, and reappear over time. [1]

Contents

Overview

Interactions of actors theory was developed late in Pask's career. It is reminiscent of Freud's psychodynamics, Bateson's panpsychism (see "Mind and Nature: A Necessary Unity" 1980). Pask's nexus of analogy, dependence and mechanical spin produces the differences that are central to cybernetics.

While working with clients in the last years of his life, Pask produced an axiomatic scheme [2] for his interactions of actors theory, less well-known than his conversation theory. Interactions of Actors, Theory and Some Applications, as the manuscript is entitled, is essentially a concurrent spin calculus applied to the living environment with strict topological constraints. [3] One of the most notable associates of Gordon Pask, Gerard de Zeeuw, was a key contributor to the development of interactions of actors theory.

The figure shows Pask's "repulsive carapace" force surrounding a concept. It is shown by the minus sign, it has a clockwise or anticlockwise spin - compare Spin. The spin signature is determined by the residual parity of a braid which is the thick line enclosed by the cylinder. The plus sign labels a process seeking closure by "eating its own tail". Three of these toroidal structures can produce a Borromean link model of the minimal stable concept. Pask said the prismatic tensegrity could be used as a model for the interaction in a Borromean link. Piarcs.png
The figure shows Pask's "repulsive carapace" force surrounding a concept. It is shown by the minus sign, it has a clockwise or anticlockwise spin – compare Spin. The spin signature is determined by the residual parity of a braid which is the thick line enclosed by the cylinder. The plus sign labels a process seeking closure by "eating its own tail". Three of these toroidal structures can produce a Borromean link model of the minimal stable concept. Pask said the prismatic tensegrity could be used as a model for the interaction in a Borromean link.
Prismatic Tensegrity space filling unit cell of a minimal concept. The red, blue and green rods exert compressive repulsions, the black lines represent attractive tensions. The Borromean link shown is regarded as a resonance form (c.f. tautomerism ) of Pask's minimal persisting concept triple. Minimal Concept Model.png
Prismatic Tensegrity space filling unit cell of a minimal concept. The red, blue and green rods exert compressive repulsions, the black lines represent attractive tensions. The Borromean link shown is regarded as a resonance form (c.f. tautomerism ) of Pask's minimal persisting concept triple.

Interactions of actors theory is a process theory. [6] As a means to describe the interdisciplinary nature of his work, Pask would make analogies to physical theories in the classic positivist enterprises of the social sciences. Pask sought to apply the axiomatic properties of agreement or epistemological dependence to produce a "sharp-valued" social science with precision comparable to the results of the hard sciences. It was out of this inclination that he would develop his interactions of actors theory. Pask's concepts produce relations in all media and he regarded IA as a process theory. In his complementarity principle he stated "Processes produce products and all products (finite, bounded coherences) are produced by processes". [7]

Most importantly Pask also had his exclusion principle. He proved that no two concepts or products could be the same because of their different histories. He called this the "No Doppelgangers" clause or edict. [6] Later he reflected "Time is incommensurable for Actors". [8] He saw these properties as necessary to produce differentiation and innovation or new coherences in physical nature and, indeed, minds.

In 1995, Pask stated what he called his Last Theorem: "Like concepts repel and unlike concepts attract". For ease of application Pask stated the differences and similarities of descriptions (the products of processes) were context and perspective dependent. In the last three years of his life Pask presented models based on Knot theory knots which described minimal persisting concepts. He interpreted these as acting as computing elements which exert repulsive forces to interact and persist in filling the space. The knots, links and braids of his entailment mesh models of concepts, which could include tangle-like processes seeking "tail-eating" closure, Pask called "tapestries".

His analysis proceeded with like seeming concepts repelling or unfolding but after a sufficient duration of interaction (he called this duration "faith") a pair of similar or like-seeming concepts will always produce a difference and thus an attraction. Amity (availability for interaction), respectability (observability), responsibility (able to respond to stimulus), unity (not uniformity) were necessary properties to produce agreement (or dependence) and agreement-to-disagree (or relative independence) when Actors interact. Concepts could be applied imperatively or permissively when a Petri (see Petri net) condition for synchronous transfer of meaningful information occurred. Extending his physical analogy Pask associated the interactions of thought generation with radiation  : "operations generating thoughts and penetrating conceptual boundaries within participants, excite the concepts bounded as oscillators, which, in ridding themselves of this surplus excitation, produce radiation" [9]

In sum, IA supports the earlier kinematic conversation theory work where minimally two concurrent concepts were required to produce a non-trivial third. One distinction separated the similarity and difference of any pair in the minimum triple. However, his formal methods denied the competence of mathematics or digital serial and parallel processes to produce applicable descriptions because of their innate pathologies in locating the infinitesimals of dynamic equilibria (Stafford Beer's "Point of Calm"). He dismissed the digital computer as a kind of kinematic "magic lantern". He saw mechanical models as the future for the concurrent kinetic computers required to describe natural processes. He believed that this implied the need to extend quantum computing to emulate true field concurrency rather than the current von Neumann architecture.

Reviewing IA [8] he said:

Interaction of actors has no specific beginning or end. It goes on forever. Since it does so it has very peculiar properties. Whereas a conversation is mapped (due to a possibility of obtaining a vague kinematic, perhaps picture-frame image, of it, onto Newtonian time, precisely because it has a beginning and end), an interaction, in general, cannot be treated in this manner. Kinematics are inadequate to deal with life: we need kinetics. Even so as in the minimal case of a strict conversation we cannot construct the truth value, metaphor or analogy of A and B. The A, B differences are generalizations about a coalescence of concepts on the part of A and B; their commonality and coherence is the similarity. The difference (reiterated) is the differentiation of A and B (their agreements to disagree, their incoherences). Truth value in this case meaning the coherence between all of the interacting actors.

He added:

It is essential to postulate vectorial times (where components of the vectors are incommensurate) and furthermore times which interact with each other in the manner of Louis Kaufmann's knots and tangles.

In experimental Epistemology Pask, the "philosopher mechanic", produced a tool kit to analyse the basis for knowledge and criticise the teaching and application of knowledge from all fields: the law, social and system sciences to mathematics, physics and biology. In establishing the vacuity of invariance Pask was challenged with the invariance of atomic number. "Ah", he said "the atomic hypothesis". He rejected this instead preferring the infinite nature of the productions of waves.

Pask held that concurrence is a necessary condition for modelling brain functions and he remarked IA was meant to stand AI, Artificial Intelligence, on its head. Pask believed it was the job of cybernetics to compare and contrast. His IA theory showed how to do this. Heinz von Foerster called him a genius, [10] "Mr. Cybernetics", the "cybernetician's cybernetician".

Hewitt's actor model

The Hewitt, Bishop and Steiger approach concerns sequential processing and inter-process communication in digital, serial, kinematic computers. It is a parallel or pseudo-concurrent theory as is the theory of concurrency. See Concurrency. In Pask's true field concurrent theory kinetic processes can interrupt (or, indeed, interact with) each other, simply reproducing or producing a new resultant force within a coherence (of concepts) but without buffering delays or priority. [11]

No Doppelgangers

"There are no Doppelgangers" is a fundamental theorem, edict or clause of cybernetics due to Pask in support of his theories of learning and interaction in all media: conversation theory and interactions of actors theory. It accounts for physical differentiation and is Pask's exclusion principle. [12] It states no two products of concurrent interaction can be the same because of their different dynamic contexts and perspectives. No Doppelgangers is necessary to account for the production by interaction and intermodulation (c.f. beats) of different, evolving, persisting and coherent forms. Two proofs are presented both due to Pask.

Duration proof

Consider a pair of moving, dynamic participants and producing an interaction . Their separation will vary during . The duration of observed from will be different from the duration of observed from . [8] [13]

Let and be the start and finish times for the transfer of meaningful information, we can write:

TsATfB,

TsBTfB,

TsATsB,

TfATsB

TfATsA

TfATfB

Thus

AB

Q.E.D.

Pask remarked: [8]

Conversation is defined as having a beginning and an end and time is vectorial. The components of the vector are commensurable (in duration). On the other hand actor interaction time is vectorial with components that are incommensurable. In the general case there is no well-defined beginning and interaction goes on indefinitely. As a result the time vector has incommensurable components. Both the quantity and quality differ.

No Doppelgangers applies in both the conversation theory's kinematic domain (bounded by beginnings and ends) where times are commensurable and in the eternal kinetic interactions of actors domain where times are incommensurable.

Reproduction proof

The second proof [6] is more reminiscent of R.D. Laing: [14] Your concept of your concept is not my concept of your concept—a reproduced concept is not the same as the original concept. Pask defined concepts as persisting, countably infinite, recursively packed spin processes (like many cored cable, or skins of an onion) in any medium (stars, liquids, gases, solids, machines and, of course, brains) that produce relations.

Here we prove A(T)  B(T).

D means "description of" and <Con A(T), DA(T)> reads A's concept of T produces A's description of T, evoking Dirac notation (required for the production of the quanta of thought: the transfer of "set-theoretic tokens", as Pask puts it in 1996 [8] ).

TA = A(T) = <Con A(T), D A(T)>, A's Concept of T,
TB = B(T) = <Con B(T), D B(T)>, B's Concept of T,

or, in general

TZ = Z(T) = <Con Z (T), D Z(T)>,

also, in general

AA = A(A) = <Con A(A), D A(A)>, A's Concept of A,
AB = A(B) = <Con A(B), D A(B)>, A's Concept of B.

and vice versa, or, in general terms

ZZ = Z(Z) = <Con Z(Z), D Z>,

given that for all Z and all T, the concepts

TA = A(T) is not equal to TB = B(T)

and that

AA = A(A) is not equal to BA = B(A) and vice versa, hence, there are no Doppelgangers.

Q.E.D.

A mechanical model

Pask attached a piece of string to a bar [15] with three knots in it. Then he attached a piece of elastic to the bar with three knots in it. One observing actor, A, on the string would see the knotted intervals on the other actor as varying as the elastic was stretched and relaxed corresponding to the relative motion of B as seen from A. The knots correspond to the beginning of the experiment then the start and finish of the A/B interaction. Referring to the three intervals, where x, y, z, are the separation distances of the knots from the bar and each other, he noted x > y > z on the string for participant A does not imply x > z for participant B on the elastic. A change of separation between A and B producing Doppler shifts during interaction, recoil or the differences in relativistic proper time for A and B, would account for this for example. On occasion a second knotted string was tied to the bar representing coordinate time.

Further context

To set in further context Pask won a prize from Old Dominion University for his complementarity principle: "All processes produce products and all products are produced by processes". This can be written:

Ap(ConZ(T)) => DZ (T) where => means produces and Ap means the "application of", D means "description of" and Z is the concept mesh or coherence of which T is part. This can also be written

<Ap(ConZ (T)), DZ (T)>.

Pask distinguishes Imperative (written &Ap or IM) from Permissive Application (written Ap) [16] where information is transferred in the Petri net manner, the token appearing as a hole in a torus producing a Klein bottle containing recursively packed concepts. [6]

Pask's "hard" or "repulsive" [6] carapace was a condition he required for the persistence of concepts. He endorsed Nicholas Rescher's coherence theory of truth approach where a set membership criterion of similarity also permitted differences amongst set or coherence members, but he insisted repulsive force was exerted at set and members' coherence boundaries. He said of G. Spencer Brown's Laws of Form that distinctions must exert repulsive forces. This is not yet accepted by Spencer Brown and others. Without a repulsion, or Newtonian reaction at the boundary, sets, their members or interacting participants would diffuse away forming a "smudge"; Hilbertian marks on paper would not be preserved. Pask, the mechanical philosopher, wanted to apply these ideas to bring a new kind of rigour to cybernetic models.

Some followers of Pask emphasise his late work, done in the closing chapter of his life, which is neither as clear nor as grounded as the prior decades of research and machine- and theory-building. This tends to skew the impression gleaned by researchers as to Pask's contribution or even his lucidity.[ citation needed ]

Related Research Articles

Absolute value Distance from zero to a number

In mathematics, the absolute value or modulus of a real number , denoted , is the non-negative value of without regard to its sign. Namely, if x is a positive number, and if is negative, and . For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its distance from zero.

Force Any action that tends to maintain or alter the motion of an object

In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity, i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newton (N). Force is represented by the symbol F.

In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

Quantum field theory Theoretical framework combining classical field theory, special relativity, and quantum mechanics

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselves are not normally distributed.

Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

Quantum decoherence Loss of quantum coherence

Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states. Coherence is preserved under the laws of quantum physics.

In mathematics, an algebra over a field is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".

In mathematics, two non-zero real numbers a and b are said to be commensurable if their ratio a/b is a rational number; otherwise a and b are called incommensurable. There is a more general notion of commensurability in group theory.

In MRI and NMR spectroscopy, an observable nuclear spin polarization (magnetization) is created by a homogeneous magnetic field. This field makes the magnetic dipole moments of the sample precess at the resonance (Larmor) frequency of the nuclei. At thermal equilibrium, nuclear spins precess randomly about the direction of the applied field. They become abruptly phase coherent when they are hit by radiofrequent (RF) pulses at the resonant frequency, created orthogonal to the field. The RF pulses cause the population of spin-states to be perturbed from their thermal equilibrium value. The generated transverse magnetization can then induce a signal in an RF coil that can be detected and amplified by an RF receiver. The return of the longitudinal component of the magnetization to its equilibrium value is termed spin-latticerelaxation while the loss of phase-coherence of the spins is termed spin-spin relaxation, which is manifest as an observed free induction decay (FID).

Gordon Pask

Andrew Gordon Speedie Pask was an English author, inventor, educational theorist, cybernetician and psychologist who made significant contributions to cybernetics, instructional psychology, experimental epistemology and educational technology. Pask first learned about cybernetics in the early 1950s when the originator of the subject, Norbert Wiener, spoke at Cambridge University, where Pask was an undergraduate student. Pask was asked to be of assistance during Wiener's talk.

New Cybernetics, as used by cybernetician Gordon Pask, is the meaningful transfer of information between coherences in all media in terms of attractions and repulsions between clockwise and anti-clockwise spins. This is a possibly defining paradigm of the new cybernetics or second-order cybernetics.

Conversation theory is a cybernetic and dialectic framework that offers a scientific theory to explain how interactions lead to "construction of knowledge", or "knowing": wishing to preserve both the dynamic/kinetic quality, and the necessity for there to be a "knower". This work was proposed by Gordon Pask in the 1970s.

Coulombs law Fundamental physical law of electromagnetism

Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point, as it made it possible to discuss the quantity of electric charge in a meaningful way.

Text and conversation is a theory in the field of organizational communication illustrating how communication makes up an organization. In the theory's simplest explanation, an organization is created and defined by communication. Communication "is" the organization and the organization exists because communication takes place. The theory is built on the notion, an organization is not seen as a physical unit holding communication. Text and conversation theory puts communication processes at the heart of organizational communication and postulates, an organization doesn't contain communication as a "causal influence", but is formed by the communication within. This theory is not intended for direct application, but rather to explain how communication exists. The theory provides a framework for better understanding organizational communication.

Interatomic potential Functions for calculating potential energy

Interatomic potentials are mathematical functions to calculate the potential energy of a system of atoms with given positions in space. Interatomic potentials are widely used as the physical basis of molecular mechanics and molecular dynamics simulations in computational chemistry, computational physics and computational materials science to explain and predict materials properties. Examples of quantitative properties and qualitative phenomena that are explored with interatomic potentials include lattice parameters, surface energies, interfacial energies, adsorption, cohesion, thermal expansion, and elastic and plastic material behavior, as well as chemical reactions.

Self-organization, a process where some form of overall order arises out of the local interactions between parts of an initially disordered system, was discovered in cybernetics by William Ross Ashby in 1947. It states that any deterministic dynamic system automatically evolves towards a state of equilibrium that can be described in terms of an attractor in a basin of surrounding states. Once there, the further evolution of the system is constrained to remain in the attractor. This constraint implies a form of mutual dependency or coordination between its constituent components or subsystems. In Ashby's terms, each subsystem has adapted to the environment formed by all other subsystems.

Supersymmetric theory of stochastic dynamics or stochastics (STS) is an exact theory of stochastic (partial) differential equations (SDEs), the class of mathematical models with the widest applicability covering, in particular, all continuous time dynamical systems, with and without noise. The main utility of the theory from the physical point of view is a rigorous theoretical explanation of the ubiquitous spontaneous long-range dynamical behavior that manifests itself across disciplines via such phenomena as 1/f, flicker, and crackling noises and the power-law statistics, or Zipf's law, of instantonic processes like earthquakes and neuroavalanches. From the mathematical point of view, STS is interesting because it bridges the two major parts of mathematical physics – the dynamical systems theory and topological field theories. Besides these and related disciplines such as algebraic topology and supersymmetric field theories, STS is also connected with the traditional theory of stochastic differential equations and the theory of pseudo-Hermitian operators.

References

  1. Scott, B (2009). Conversations, Individuals and Concepts: Some key concepts in Gordon Pask's Interaction of Actors and Conversation Theories. Constructivist Foundations. 4(3): 151-158 (pp. 155-156).
  2. Short discussion in context of upper ontology and the inadequacy of serial (digital computer) modelling Retrieved 9 June 2008 at cybsys.co.uk
  3. Nick Green (2003). Gordon Pask. At cybsoc.org. Retrieved 1 July 2008.
  4. Aspects of these structures can be investigated with Scharein's KnotPlot software.
  5. Pask (1993) fig.35 para. 219
  6. 1 2 3 4 5 Gordon Pask (1993), Interactions of Actors, Theory and Some Applications
  7. Pask (1996) p.355 and Postulate (20) p. 359
  8. 1 2 3 4 5 Gordon Pask (1996). Heinz von Foerster's Self-Organisation, the Progenitor of Conversation and Interaction Theories.
  9. Pask 1993, paragraph 84.
  10. von Foerster pp 35–42 in Glanville (1993)
  11. Pask 1993 paras 100, 130
  12. Pask (1993) para 82 and Table 4
  13. Pask (1993) para 102
  14. R.D. Laing (1970)
  15. Green, Nick. "On Gordon Pask." Kybernetes 30.5/6 (2001): 673-682.
  16. Pask (1993) para 188