Inverse synthetic-aperture radar

Last updated

Inverse synthetic-aperture radar (ISAR) is a radar technique using radar imaging to generate a two-dimensional high resolution image of a target. It is analogous to conventional SAR, except that ISAR technology uses the movement of the target rather than the emitter to create the synthetic aperture. [1] ISAR radars have a significant role aboard maritime patrol aircraft to provide them with radar image of sufficient quality to allow it to be used for target recognition purposes. In situations where other radars display only a single unidentifiable bright moving pixel, the ISAR image is often adequate to discriminate between various missiles, military aircraft, and civilian aircraft.

Contents

Radar cross-section imaging

Images of the target region produced by ISAR can be a useful tool in locating scattering regions on the target. ISAR images are often produced by rotating the target and processing the resultant Doppler histories of the scattering centers. If the target rotates in azimuth at a constant rate through a 'small' angle, scatterers will approach or recede from the radar at a rate depending only on the cross range position—the distance normal to the radar line of sight with the origin at the target axis of rotation. The rotation will result in the generation of cross range dependent Doppler frequencies which can be sorted spatially by a Fourier transform. For small angles, an ISAR image is the 2-dimensional Fourier transform of the received signal as a function of frequency and target aspect angle.

If the target is rotated through large angles, the Doppler frequency history of a scatterer becomes non-linear, following a sine wave trajectory. This Doppler history can not be processed directly by a Fourier transform because of the smeared Doppler frequency history resulting in the loss of cross range resolution. The maximum rotation angle which can be processed by an unmodified Fourier transform is determined by the constraint that the aperture phase error across the synthesized aperture should vary by less than a specified (arbitrary) amount, for example 45 degrees. This occurs when the synthetic aperture to the target range is less than required by the limit where is the required lateral extent of the target. At this point the synthetic aperture is within the target nearfield region and requires focusing. The focusing is accomplished by applying a phase correction to the synthetic aperture.

Applications

ISAR is used in maritime surveillance for the classification of ships and other objects. In these applications the motion of the object due to wave action often plays a greater role than object rotation. For instance a feature which extends far over the surface of a ship such as a mast will provide a high sinusoidal response which is clearly identifiable in a two dimensional image. Images sometimes produce an uncanny similarity to a visual profile with the interesting effect that as the object rocks towards or away from the receiver the alternating doppler returns cause the profile to cycle between upright and inverted. ISAR for maritime surveillance was pioneered by Texas Instruments in collaboration with the Naval Research Laboratory and became an important capability of the P-3 Orion and the S-3B Viking US Navy aircraft.

Research has been done also with land based ISAR. The difficulty in using this capability is that the object motion is far less in magnitude and usually less periodic than in the maritime case.

Perhaps the most visually striking and scientifically compelling application of ISAR is in the deep space imaging of asteroids. A particularly beautiful example of this is the so-called "dog's bone" 216 Kleopatra asteroid, which lies roughly 20% further away from the earth than the sun. The asteroid is only 60 miles wide at its midpoint. Yet the imagery is crisp and looks like an optical image. This has been cited as akin to using a telescope in Los Angeles that is the size of the human eye's lens to image a car in New York. Of course, the trick here is that the asteroid is presented among a very sparse background, allowing for substantial disambiguation.

In February 2013, Indra Sistemas, a Spanish technology company, announced the first passive ISAR. A passive radar is characterised by not emitting any form of radiation, i.e., it uses the signals present in the environment. In this case, the radar uses digital terrestrial television signals as the non-cooperative source of illumination in the environment. [2]

Errors

Errors in the ISAR imaging process generally result in defocusing and geometry errors in the image. ISAR transform errors include:

Errors in the 2D planar Inverse ISAR transform include:

See also

Related Research Articles

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

In radio communication, multipath is the propagation phenomenon that results in radio signals reaching the receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and reflection from water bodies and terrestrial objects such as mountains and buildings. When the same signal is received over more than one path, it can create interference and phase shifting of the signal. Destructive interference causes fading; this may cause a radio signal to become too weak in certain areas to be received adequately. For this reason, this effect is also known as multipath interference or multipath distortion.

<span class="mw-page-title-main">Phased array</span> Array of antennas creating a steerable beam

In antenna theory, a phased array usually means an electronically scanned array, a computer-controlled array of antennas which creates a beam of radio waves that can be electronically steered to point in different directions without moving the antennas. The general theory of an electromagnetic phased array also finds applications in ultrasonic and medical imaging application and in optics optical phased array.

<span class="mw-page-title-main">Doppler radar</span> Type of radar equipment

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc.

<span class="mw-page-title-main">Synthetic-aperture radar</span> Form of radar used to create images of landscapes

Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars. SAR is typically mounted on a moving platform, such as an aircraft or spacecraft, and has its origins in an advanced form of side looking airborne radar (SLAR). The distance the SAR device travels over a target during the period when the target scene is illuminated creates the large synthetic antenna aperture. Typically, the larger the aperture, the higher the image resolution will be, regardless of whether the aperture is physical or synthetic – this allows SAR to create high-resolution images with comparatively small physical antennas. For a fixed antenna size and orientation, objects which are further away remain illuminated longer – therefore SAR has the property of creating larger synthetic apertures for more distant objects, which results in a consistent spatial resolution over a range of viewing distances.

Aperture synthesis or synthesis imaging is a type of interferometry that mixes signals from a collection of telescopes to produce images having the same angular resolution as an instrument the size of the entire collection. At each separation and orientation, the lobe-pattern of the interferometer produces an output which is one component of the Fourier transform of the spatial distribution of the brightness of the observed object. The image of the source is produced from these measurements. Astronomical interferometers are commonly used for high-resolution optical, infrared, submillimetre and radio astronomy observations. For example, the Event Horizon Telescope project derived the first image of a black hole using aperture synthesis.

<span class="mw-page-title-main">Imaging radar</span> Application of radar which is used to create two-dimensional images

Imaging radar is an application of radar which is used to create two-dimensional images, typically of landscapes. Imaging radar provides its light to illuminate an area on the ground and take a picture at radio wavelengths. It uses an antenna and digital computer storage to record its images. In a radar image, one can see only the energy that was reflected back towards the radar antenna. The radar moves along a flight path and the area illuminated by the radar, or footprint, is moved along the surface in a swath, building the image as it does so.

Beamforming or spatial filtering is a signal processing technique used in sensor arrays for directional signal transmission or reception. This is achieved by combining elements in an antenna array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity. The improvement compared with omnidirectional reception/transmission is known as the directivity of the array.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

The AN/APG-76 radar is a pulse Doppler Ku band multi-mode radar developed and manufactured by Northrop Grumman.

<span class="mw-page-title-main">Clutter (radar)</span> Unwanted echoes

Clutter is a term used for unwanted echoes in electronic systems, particularly in reference to radars. Such echoes are typically returned from ground, sea, rain, animals/insects, chaff and atmospheric turbulences, and can cause serious performance issues with radar systems. What one person considers to be unwanted clutter, another may consider to be a wanted target. However, targets usually refer to point scatterers and clutter to extended scatterers. The clutter may fill a volume or be confined to a surface. A knowledge of the volume or surface area illuminated is required to estimated the echo per unit volume, η, or echo per unit surface area, σ°.

Radar engineering details are technical details pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment. This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.

Radar MASINT is a subdiscipline of measurement and signature intelligence (MASINT) and refers to intelligence gathering activities that bring together disparate elements that do not fit within the definitions of signals intelligence (SIGINT), imagery intelligence (IMINT), or human intelligence (HUMINT).

Moving target indication (MTI) is a mode of operation of a radar to discriminate a target against the clutter. It describes a variety of techniques used for finding moving objects, like an aircraft, and filter out unmoving ones, like hills or trees. It contrasts with the modern stationary target indication (STI) technique, which uses details of the signal to directly determine the mechanical properties of the reflecting objects and thereby find targets whether they are moving or not.

<span class="mw-page-title-main">TIRA</span>

The Tracking & Imaging Radar (TIRA) system serves as the central experimental facility for the development and investigation of radar techniques for the detection and reconnaissance of objects in space, and of air targets.

<span class="mw-page-title-main">Irbis-E</span> Type of aircraft

Irbis-E is a Russian multi-mode, hybrid passive electronically scanned array radar system developed by Tikhomirov NIIP for the Sukhoi Su-35 multi-purpose fighter aircraft. NIIP developed the Irbis-E radar from the N011M Bars radar system used on Sukhoi Su-30MKI aircraft.

Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common. Small fast moving objects can be identified close to terrain, near the sea surface, and inside storms.

<span class="mw-page-title-main">Side looking airborne radar</span>

Side-looking airborne radar (SLAR) is an aircraft- or satellite-mounted imaging radar pointing perpendicular to the direction of flight. A squinted (nonperpendicular) mode is also possible. SLAR can be fitted with a standard antenna or an antenna using synthetic aperture.

The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power. Furthermore, the process offers good range resolution because the half-power beam width of the compressed pulse is consistent with the system bandwidth.

<span class="mw-page-title-main">High Resolution Wide Swath SAR imaging</span>

High Resolution Wide Swath (HRWS) imaging is an important branch in synthetic aperture radar (SAR) imaging, a remote sensing technique capable of providing high resolution images independent of weather conditions and sunlight illumination. This makes SAR very attractive for the systematic observation of dynamic processes on the Earth's surface, which is useful for environmental monitoring, earth resource mapping and military systems.

References

  1. Skolnik, Merrill (1990). Radar Handbook. Boston: McGraw Hill. p. 12. ISBN   0-07-057913-X.
  2. "Indra develops the first high-resolution passive radar system" . Retrieved 2013-02-11.