Jennifer Salmond

Last updated

Related Research Articles

<span class="mw-page-title-main">Ozone</span> Allotrope of oxygen (O₃) present in Earths atmosphere

Ozone is an inorganic molecule with the chemical formula O
3
. It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope O
2
, breaking down in the lower atmosphere to O
2
(dioxygen). Ozone is formed from dioxygen by the action of ultraviolet (UV) light and electrical discharges within the Earth's atmosphere. It is present in very low concentrations throughout the atmosphere, with its highest concentration high in the ozone layer of the stratosphere, which absorbs most of the Sun's ultraviolet (UV) radiation.

<span class="mw-page-title-main">Ozone depletion</span> Atmospheric phenomenon

Ozone depletion consists of two related events observed since the late 1970s: a steady lowering of about four percent in the total amount of ozone in Earth's atmosphere, and a much larger springtime decrease in stratospheric ozone around Earth's polar regions. The latter phenomenon is referred to as the ozone hole. There are also springtime polar tropospheric ozone depletion events in addition to these stratospheric events.

<span class="mw-page-title-main">Stratosphere</span> Layer of the atmosphere above the troposphere

The stratosphere is the second layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. The stratosphere is an atmospheric layer composed of stratified temperature layers, with the warm layers of air high in the sky and the cool layers of air in the low sky, close to the planetary surface of the Earth. The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer. The temperature inversion is in contrast to the troposphere, and near the Earth's surface, where temperature decreases with altitude.

<span class="mw-page-title-main">Tropopause</span> The boundary of the atmosphere between the troposphere and stratosphere

The tropopause is the atmospheric boundary that demarcates the troposphere from the stratosphere, which are the lowest two of the five layers of the atmosphere of Earth. The tropopause is a thermodynamic gradient-stratification layer that marks the end of the troposphere, and is approximately 17 kilometres (11 mi) above the equatorial regions, and approximately 9 kilometres (5.6 mi) above the polar regions.

<span class="mw-page-title-main">Ground-level ozone</span> Constituent gas of the troposphere

Ground-level ozone (O3), also known as surface-level ozone and tropospheric ozone, is a trace gas in the troposphere (the lowest level of the Earth's atmosphere), with an average concentration of 20–30 parts per billion by volume (ppbv), with close to 100 ppbv in polluted areas. Ozone is also an important constituent of the stratosphere, where the ozone layer (2 to 8 parts per million ozone) exists which is located between 10 and 50 kilometers above the Earth's surface. The troposphere extends from the ground up to a variable height of approximately 14 kilometers above sea level. Ozone is least concentrated in the ground layer (or planetary boundary layer) of the troposphere. Ground-level or tropospheric ozone is created by chemical reactions between NOx gases (oxides of nitrogen produced by combustion) and volatile organic compounds (VOCs). The combination of these chemicals in the presence of sunlight form ozone. Its concentration increases as height above sea level increases, with a maximum concentration at the tropopause. About 90% of total ozone in the atmosphere is in the stratosphere, and 10% is in the troposphere. Although tropospheric ozone is less concentrated than stratospheric ozone, it is of concern because of its health effects. Ozone in the troposphere is considered a greenhouse gas, and may contribute to global warming.

<span class="mw-page-title-main">Wind shear</span> Difference in wind speed or direction over a short distance

Wind shear, sometimes referred to as wind gradient, is a difference in wind speed and/or direction over a relatively short distance in the atmosphere. Atmospheric wind shear is normally described as either vertical or horizontal wind shear. Vertical wind shear is a change in wind speed or direction with a change in altitude. Horizontal wind shear is a change in wind speed with a change in lateral position for a given altitude.

<span class="mw-page-title-main">Ceilometer</span> Ground-based lidar for cloud height measurement

A ceilometer is a device that uses a laser or other light source to determine the height of a cloud ceiling or cloud base. Ceilometers can also be used to measure the aerosol concentration within the atmosphere. A ceilometer that uses laser light is a type of atmospheric lidar instrument.

<span class="mw-page-title-main">MOPITT</span> Canadian scientific instrument aboard NASAs Terra satellite

MOPITT is an ongoing astronomical instrument aboard NASA's Terra satellite that measures global tropospheric carbon monoxide levels. It is part of NASA's Earth Observing System (EOS), and combined with the other payload remote sensors on the Terra satellite, the spacecraft monitors the Earth's environment and climate changes. Following its construction in Canada, MOPITT was launched into Earth's orbit in 1999 and utilizes gas correlation spectroscopy to measure the presence of different gases in the troposphere. The fundamental operations occur in its optical system composed of two optical tables holding the bulk of the apparatus. Results from the MOPITT enable scientists to better understand carbon monoxide's effects on a global scale, and various studies have been conducted based on MOPITT's measurements.

The Bulk Richardson Number (BRN) is an approximation of the Gradient Richardson number. The BRN is a dimensionless ratio in meteorology related to the consumption of turbulence divided by the shear production (the generation of turbulence kinetic energy caused by wind shear) of turbulence. It is used to show dynamic stability and the formation of turbulence.

The following outline is provided as an overview of and topical guide to air pollution dispersion: In environmental science, air pollution dispersion is the distribution of air pollution into the atmosphere. Air pollution is the introduction of particulates, biological molecules, or other harmful materials into Earth's atmosphere, causing disease, death to humans, damage to other living organisms such as food crops, and the natural or built environment. Air pollution may come from anthropogenic or natural sources. Dispersion refers to what happens to the pollution during and after its introduction; understanding this may help in identifying and controlling it.

Gordon Miller Bourne Dobson was a British physicist and meteorologist who did important work on ozone.

<span class="mw-page-title-main">Air pollution</span> Presence of dangerous substances in the atmosphere

Air pollution is the contamination of air due to the presence of substances called pollutants in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. It is also the contamination of the indoor or outdoor environment either by chemical, physical, or biological agents that alters the natural features of the atmosphere. There are many different types of air pollutants, such as gases, particulates, and biological molecules. Air pollution can cause diseases, allergies, and even death to humans; it can also cause harm to other living organisms such as animals and crops, and may damage the natural environment or built environment. Air pollution can be caused by both human activities and natural phenomena.

<span class="mw-page-title-main">Atmospheric instability</span> Condition where the Earths atmosphere is generally considered to be unstable

Atmospheric instability is a condition where the Earth's atmosphere is considered to be unstable and as a result local weather is highly variable through distance and time. Atmospheric stability is a measure of the atmosphere's tendency to discourage vertical motion, and vertical motion is directly correlated to different types of weather systems and their severity. In unstable conditions, a lifted thing, such as a parcel of air will be warmer than the surrounding air. Because it is warmer, it is less dense and is prone to further ascent.

<span class="mw-page-title-main">Atmospheric temperature</span> Physical quantity that expresses hot and cold in the atmosphere

Atmospheric temperature is a measure of temperature at different levels of the Earth's atmosphere. It is governed by many factors, including incoming solar radiation, humidity, and altitude. The abbreviation MAAT is often used for Mean Annual Air Temperature of a geographical location.

The convective planetary boundary layer (CPBL), also known as the daytime planetary boundary layer, is the part of the lower troposphere most directly affected by solar heating of the Earth's surface.

<span class="mw-page-title-main">Alpine planetary boundary layer</span>

The alpine planetary boundary layer is the planetary boundary layer (PBL) associated with mountainous regions. Due to its high spatial and temporal variability, its behavior is more complex than over a flat terrain. The fast changing local wind system directly linked to topography and the variable land cover that goes from snow to vegetation have a significant effect on the growth of the PBL and make it much harder to predict.

William Christopher Swinbank was a British-born meteorological physicist who worked at the UK Meteorological Office, the CSIRO Australia and the NCAR Colorado. His main areas of research were fog prediction, upper atmosphere analysis, wind predictions, hail storms and turbulent fluxes.

Rachel A. Spronken-Smith is a New Zealand professor of higher education and geographer at the University of Otago. She has won a number of awards for her teaching, and consults on curriculum design in higher education.

Kim Natasha Dirks is a Canadian–New Zealand academic, and is a full professor at the University of Auckland, specialising in infrastructure impacts on population health.

<span class="mw-page-title-main">Cate Macinnis-Ng</span> New Zealand ecophysiologist

Catriona M. O. Macinnis-Ng is a New Zealand ecologist, and is a full professor at the University of Auckland, specialising in the effects of climate change, especially drought, on plants. She has been awarded a Rutherford Discovery Fellowship, the Roger Slack Award, and the Miriam Dell Award for Excellence in Science Mentoring.

References

  1. 1 2 3 4 5 University of Auckland. "Academic profile: Professor Jennifer Salmond". profiles.auckland.ac.nz. Retrieved 5 March 2024.
  2. Salmond, Jennifer Ann (2001). Vertical mixing of ozone in the very stable nocturnal boundary layer (PhD thesis). University of British Columbia. doi:10.14288/1.0090888.
  3. "Past lectures - The University of Auckland". www.auckland.ac.nz. Retrieved 5 March 2024.
  4. "Healthy Polis - Developing Urban Lifecourse Approaches in response to Climate Change". WUN. Retrieved 5 March 2024.
  5. "The Meteorological Society of New Zealand - Committee". www.metsoc.org.nz. Retrieved 5 March 2024.
  6. "Take 10 with... Jennifer Salmond - The University of Auckland". www.auckland.ac.nz. Retrieved 5 March 2024.
  7. Bardsley, Anne; Liu, Dr Wendy; Salmond, Jennifer; Allen, Kristiann; Tadaki, Marc; Brook, Martin (10 August 2023). "Incremental environmental change can be as hazardous as a sudden shock – managing these 'slow-burning' risks is vital". The Conversation. Retrieved 5 March 2024.
  8. Salmond, Jennifer; Brook, Martin (23 September 2020). "What lies beneath: is this the new asbestos?". Newsroom. Retrieved 5 March 2024.
  9. MBIE. "2020 Endeavour Fund successful proposals". Ministry for Business, Innovation and Employment. Retrieved 6 March 2024.
Jennifer Salmond
Born
Jennifer Ann Salmond
Academic background
Alma mater University of British Columbia , University of Oxford , University of Birmingham
Thesis
Doctoral advisorIan G. McKendry