Jet erosion test

Last updated

The jet erosion test (JET), or jet index test, is a method used in geotechnical engineering to quantify the resistance of a soil to erosion. The test can be applied in-situ after preparing a field site, or it can be applied in a laboratory on either an intact or a remolded soil sample. A quantitative measure of erodibility allows for the prediction of erosion, assisting with the design of structures such as vegetated channels, road embankments, dams, levees, and spillways. [1]

Contents

Procedure

The test consists of mounting a jet tube inside of an enclosed cylinder and releasing a turbulent downpour of water onto a soil specimen at a constant hydraulic head. If the shear stress applied by the jet stream exceeds the critical shear stress for erosion of the soil, the jet will erode soil particles, causing a scour hole to form. The depth of the scour hole is then measured at specified time intervals.

Fitting the measured erosion rate (Er) to the following equation allows the estimation of the erodibility of the soil (kd) and the critical shear stress (τc), provided that the applied shear stress (τ) is estimated precisely: [2]

As of 2017, there is no universally accepted methodology to determine the erodibility of a soil. [3] While the jet erosion test provides one estimate for the erodibility, the underlying assumptions of the test have been criticized for various reasons. [3] [4] Other erosion testing methods may produce values for erodibility and critical shear stress inconsistent with this method. [1] [3] Additionally, depending on the method used to fit the results to the above equation, the predicted values of kd for a given τc can be up to 100 times smaller or larger due to predictive uncertainty. [3]

The jet erosion index

One of the results of the test is the jet erosion index (Ji), which can be correlated with the soil erodibility. Typically, the jet erosion index ranges from 0 to 0.03. [1]

Typical values of the jet erosion index
Erosion resistanceJet erosion index (Ji)
High≤ 0.001
Medium~0.01
Low≥ 0.02

Related Research Articles

<span class="mw-page-title-main">Stress (mechanics)</span> Physical quantity that expresses internal forces in a continuous material

In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has dimension of force per area, with SI units of newtons per square meter (N/m2) or pascal (Pa).

<span class="mw-page-title-main">Shear stress</span> Component of stress coplanar with a material cross section

Shear stress is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

<span class="mw-page-title-main">Bingham plastic</span> Material which is solid at low stress but becomes viscous at high stress

In materials science, a Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after Eugene C. Bingham who proposed its mathematical form.

<span class="mw-page-title-main">Soil mechanics</span> Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.

<span class="mw-page-title-main">Mohr's circle</span> Geometric civil engineering calculation technique

Mohr's circle is a two-dimensional graphical representation of the transformation law for the Cauchy stress tensor.

<span class="mw-page-title-main">Shear strength</span> Capacity of a material or structure to resist failure while under shear stress

In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force. When a paper is cut with scissors, the paper fails in shear.

Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.

<span class="mw-page-title-main">Torsion (mechanics)</span> Twisting of an object due to an applied torque

In the field of solid mechanics, torsion is the twisting of an object due to an applied torque. Torsion is expressed in either the pascal (Pa), an SI unit for newtons per square metre, or in pounds per square inch (psi) while torque is expressed in newton metres (N·m) or foot-pound force (ft·lbf). In sections perpendicular to the torque axis, the resultant shear stress in this section is perpendicular to the radius.

<span class="mw-page-title-main">Yield (engineering)</span> Phenomenon of deformation due to structural stress

In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation.

<span class="mw-page-title-main">Critical resolved shear stress</span> Component of shear stress necessary to initiate slip in a crystal

In materials science, critical resolved shear stress (CRSS) is the component of shear stress, resolved in the direction of slip, necessary to initiate slip in a grain. Resolved shear stress (RSS) is the shear component of an applied tensile or compressive stress resolved along a slip plane that is other than perpendicular or parallel to the stress axis. The RSS is related to the applied stress by a geometrical factor, m, typically the Schmid factor:

Internal erosion is the formation of voids within a soil caused by the removal of material by seepage. It is the second most common cause of failure in levees and one of the leading causes of failures in earth dams, responsible for about half of embankment dam failures.

<span class="mw-page-title-main">Sediment transport</span> Movement of solid particles, typically by gravity and fluid entrainment

Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks, mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting. Sediment transport due to fluid motion occurs in rivers, oceans, lakes, seas, and other bodies of water due to currents and tides. Transport is also caused by glaciers as they flow, and on terrestrial surfaces under the influence of wind. Sediment transport due only to gravity can occur on sloping surfaces in general, including hillslopes, scarps, cliffs, and the continental shelf—continental slope boundary.

<span class="mw-page-title-main">Shear strength (soil)</span> Magnitude of the shear stress that a soil can sustain

Shear strength is a term used in soil mechanics to describe the magnitude of the shear stress that a soil can sustain. The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contacts. Due to interlocking, particulate material may expand or contract in volume as it is subject to shear strains. If soil expands its volume, the density of particles will decrease and the strength will decrease; in this case, the peak strength would be followed by a reduction of shear stress. The stress-strain relationship levels off when the material stops expanding or contracting, and when interparticle bonds are broken. The theoretical state at which the shear stress and density remain constant while the shear strain increases may be called the critical state, steady state, or residual strength.

<span class="mw-page-title-main">Critical state soil mechanics</span>

Critical state soil mechanics is the area of soil mechanics that encompasses the conceptual models representing the mechanical behavior of saturated remoulded soils based on the critical state concept. At the critical state, the relationship between forces applied in the soil (stress), and the resulting deformation resulting from this stress (strain) becomes constant. The soil will continue to deform, but the stress will no longer increase.

Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure (yield). Depending on the conditions most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.

The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k, the flow index n, and the yield shear stress . The consistency is a simple constant of proportionality, while the flow index measures the degree to which the fluid is shear-thinning or shear-thickening. Ordinary paint is one example of a shear-thinning fluid, while oobleck provides one realization of a shear-thickening fluid. Finally, the yield stress quantifies the amount of stress that the fluid may experience before it yields and begins to flow.

<span class="mw-page-title-main">Bridge scour</span> Erosion of sediment near bridge foundations by water

Bridge scour is the removal of sediment such as sand and gravel from around bridge abutments or piers. Hydrodynamic scour, caused by fast flowing water, can carve out scour holes, compromising the integrity of a structure.

<span class="mw-page-title-main">Slope stability analysis</span> Method for analyzing stability of slopes of soil or rock

Slope stability analysis is a static or dynamic, analytical or empirical method to evaluate the stability of slopes of soil- and rock-fill dams, embankments, excavated slopes, and natural slopes in soil and rock. It is performed to assess the safe design of a human-made or natural slopes and the equilibrium conditions. Slope stability is the resistance of inclined surface to failure by sliding or collapsing. The main objectives of slope stability analysis are finding endangered areas, investigation of potential failure mechanisms, determination of the slope sensitivity to different triggering mechanisms, designing of optimal slopes with regard to safety, reliability and economics, and designing possible remedial measures, e.g. barriers and stabilization.

Erodability is the inherent yielding or nonresistance of soils and rocks to erosion. A high erodibility implies that the same amount of work exerted by the erosion processes leads to a larger removal of material. Because the mechanics behind erosion depend upon the competence and coherence of the material, erodibility is treated in different ways depending on the type of surface that eroded.

The hole erosion test (HET) is a method used in geotechnical engineering to quantify the resistance of a soil to erosion, and is specifically relevant to the topic of internal erosion in embankment dams. The test can be performed in a laboratory on a remolded soil sample, and provides estimates of both the critical shear stress for erosion of the soil sample as well as a numerical measure of soil erodibility. In the design and engineering of embankment dams, the critical shear stress provided by this test indicates the maximum shear stress that a fluid can apply to a soil before a concentrated leak forms and erosion begins. The numerical measure of soil erodibility can be used to predict how quickly this erosion will progress, and it can be found as an input in various computer simulations for dam failure.

References

  1. 1 2 3 ASTM D5852-00.
  2. Hanson, G J; Cook, K (2004). "Apparatus, test procedures, and analytical methods to measure soil erodibility in-situ". Applied Engineering in Agriculture. 20 (4): 455–462. doi:10.13031/2013.16492 via Elsevier Science Direct.
  3. 1 2 3 4 Karamigolbaghi, Maliheh; Ghaneeizad, Seyed Mohammad; Atkinson, Joseph F.; Bennett, Sean J.; Wells, Robert R. (2017-10-15). "Critical assessment of jet erosion test methodologies for cohesive soil and sediment". Geomorphology. 295: 529–536. Bibcode:2017Geomo.295..529K. doi:10.1016/j.geomorph.2017.08.005. ISSN   0169-555X.
  4. Ghaneeizad, Seyed Mohammad; Atkinson, Joseph F.; Bennett, Sean J. (2015-02-01). "Effect of flow confinement on the hydrodynamics of circular impinging jets: implications for erosion assessment". Environmental Fluid Mechanics. 15 (1): 1–25. Bibcode:2015EFM....15....1G. doi:10.1007/s10652-014-9354-3. ISSN   1573-1510.