John H. Miller Jr.

Last updated
John Harris Miller, Jr.
Born
United States
Alma mater Northwestern University (B.S.)
University of Illinois at Urbana-Champaign (Ph.D)
Known for Charge density wave
Impedance spectroscopy of living organisms
Scientific career
Fields Physics
Electronics
Institutions University of Illinois
University of North Carolina at Chapel Hill
University of Houston
Doctoral advisor John Bardeen
J. R. Tucker

John Harris Miller Jr. is an American physicist with important contributions to the fields of physics, biophysics, Impedance spectroscopy, and material science, mainly known for his role in Charge density wave (in explaining the collective quantum transport of electrons in charge density waves), research work on Cuprates and Impedance spectroscopy of living organisms. [1] [2] [3] [4] He is particularly known for an effect "Collective Quantum Tunneling of CDW Electrons" [5] and for a well-known paper on the topic written by him and his colleagues, as published in Physical Review Letters. [6] He was a noteworthy student of the twice Nobel laureate physicist John Bardeen who mentioned him at several places in his biography "True Genius: The Life and Science of John Bardeen" (John Bardeen) [7] (particularly in Chapter 15 of the book which discusses the work which Miller carried out under the guidance of Bardeen and J. R. Tucker).

Contents

Biography

Miller grew up in the Sangre de Cristo Mountains of northern New Mexico. His family lived in the small resort town of Red River. His parents were owners of the small beginner ski area at the Powder Puff mountain, and later Enchanted Forest Cross Country Ski Area. He attended school in Questa, New Mexico, where many descendants of the original Spanish conquistadores live, some speaking a sixteenth-century dialect of Spanish. He was a slalom, giant slalom, and downhill ski racer, first on the Red River and later on the Taos ski teams. While an undergraduate, he was a member of the Northwestern University Ski Team, acting as both captain and coach during one season.

After completing his high school, Miller completed his bachelor's degree in electrical engineering at Northwestern University (1980) and his doctorate, in 1985, from the University of Illinois at Urbana-Champaign in physics, under J. R. Tucker and John Bardeen as his advisors. His PhD project was a combined experimental-theoretical study of quantum transport of electrons in Charge density waves, as one of the last students to work with Bardeen, who was the co-inventor of the transistor and the only recipient of two Nobel laurels in physics (his second Nobel prize awarded for the BCS theory of superconductivity).

Soon after completion of his PhD, he was awarded a prestigious IBM Postdoctoral fellowship at the University of Illinois. He joined the University of North Carolina at Chapel Hill in 1986 as an assistant professor of physics, where he remained till 1989, before joining the University of Houston, Department of Physics faculty, where he continues as a full professor of physics, in addition to being the director, HTS Device, Biophysics, and Charge Transport Lab at the Texas Center for Superconductivity at University of Houston. He has held the adjunct assistant professorship of pediatric cardiology at the Baylor College of Medicine, from 1994 to 2004. In 1987 he was selected for and awarded the Alfred P. Sloan Research Fellowship.

Scientific contributions

While exploring biomedical applications of novel superconducting devices (such as SQUIDs and SQUID-based sensitive magnetometers) at the University of Houston, he laid down the foundations of a Biophysics research group in association with researchers in the Texas Medical Center (TMC) in the mid 1990s. The group has expanded and evolved significantly since then, to develop new techniques and devices to study various living organisms. His group's work on the dielectric properties of living cells and organelles led to studying the electromagnetic properties of living cells and creating collaborations with TMC researchers (including Dale Hamilton, MD) to develop electromagnetic biosensors to detect metabolic activity in mitochondria, as related to various human conditions such as obesity and its complications (under various grants funded by the National Institutes of Health with Miller as their P.I.). This led also to group's various theoretical efforts, such as development of electric field-driven torque models of the mitochondrial motor ATP synthase and efforts to understand mechanisms of disease-implicated mitochondrial mutations in the Electron transport chain, [8] [9] [10] [11] [12] as well as reports of measurement of intrinsic electromagnetic activity and noise from living yeast cells in their best metabolic conditions. [13] [14]

His group has also been involved with computational studies of localization of electron holes in the DNA, finding a correlation between sites of hole localization and nucleotide positions of human mutations in mitochondrial DNA. This has led to a (experimental as yet) computational DNA hole spectroscopy method, which they discuss in a publication, [15] in collaboration with the reputed UH evolutionary biologist Ricardo Azevedo.

Miller in association with his colleagues has recently proposed the idea of "Martian soil Biosensors" based on their developed techniques of dielectric spectroscopy. [16]

Noteworthy students/Post-docs

Honors, awards and patents

Memberships

Related Research Articles

<span class="mw-page-title-main">BCS theory</span> Microscopic theory of superconductivity

In physics, theBardeen–Cooper–Schrieffer (BCS) theory is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes superconductivity as a microscopic effect caused by a condensation of Cooper pairs. The theory is also used in nuclear physics to describe the pairing interaction between nucleons in an atomic nucleus.

<span class="mw-page-title-main">Condensed matter physics</span> Branch of physics

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases, that arise from electromagnetic forces between atoms and electrons. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconducting phase exhibited by certain materials at extremely low cryogenic temperatures, the ferromagnetic and antiferromagnetic phases of spins on crystal lattices of atoms, the Bose–Einstein condensates found in ultracold atomic systems, and liquid crystals. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the physical laws of quantum mechanics, electromagnetism, statistical mechanics, and other physics theories to develop mathematical models and predict the properties of extremely large groups of atoms.

<span class="mw-page-title-main">John Bardeen</span> American physicist and engineer (1908–1991)

John Bardeen ; May 23, 1908 – January 30, 1991) was an American physicist and electrical engineer. He is the only person to be awarded the Nobel Prize in Physics twice: first in 1956 with William Shockley and Walter Brattain for the invention of the transistor; and again in 1972 with Leon N. Cooper and John Robert Schrieffer for a fundamental theory of conventional superconductivity known as the BCS theory.

<span class="mw-page-title-main">Photoluminescence</span> Light emission from substances after they absorb photons

Photoluminescence is light emission from any form of matter after the absorption of photons. It is one of many forms of luminescence and is initiated by photoexcitation, hence the prefix photo-. Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.

<span class="mw-page-title-main">Plasmon</span> Quasiparticle of charge oscillations in condensed matter

In physics, a plasmon is a quantum of plasma oscillation. Just as light consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.

In condensed matter physics, a Cooper pair or BCS pair is a pair of electrons bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Cooper.

<span class="mw-page-title-main">Polaron</span> Quasiparticle in condensed matter physics

A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.

<span class="mw-page-title-main">Pilot wave theory</span> One interpretation of quantum mechanics

In theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quantum mechanics as a deterministic theory, and avoids issues such as wave–particle duality, instantaneous wave function collapse, and the paradox of Schrödinger's cat by being inherently nonlocal.

An electron bubble is the empty space created around a free electron in a cryogenic gas or liquid, such as neon or helium. They are typically very small, about 2 nm in diameter at atmospheric pressure.

<span class="mw-page-title-main">Spartan (chemistry software)</span>

Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1. Quantum chemistry calculations in Spartan are powered by Q-Chem.

<span class="mw-page-title-main">Sankar Das Sarma</span>

Sankar Das Sarma is an India-born American theoretical condensed matter physicist. He has been a member of the department of physics at University of Maryland, College Park since 1980.

A charge density wave (CDW) is an ordered quantum fluid of electrons in a linear chain compound or layered crystal. The electrons within a CDW form a standing wave pattern and sometimes collectively carry an electric current. The electrons in such a CDW, like those in a superconductor, can flow through a linear chain compound en masse, in a highly correlated fashion. Unlike a superconductor, however, the electric CDW current often flows in a jerky fashion, much like water dripping from a faucet due to its electrostatic properties. In a CDW, the combined effects of pinning and electrostatic interactions likely play critical roles in the CDW current's jerky behavior, as discussed in sections 4 & 5 below.

In materials science, heavy fermion materials are a specific type of intermetallic compound, containing elements with 4f or 5f electrons in unfilled electron bands. Electrons are one type of fermion, and when they are found in such materials, they are sometimes referred to as heavy electrons. Heavy fermion materials have a low-temperature specific heat whose linear term is up to 1000 times larger than the value expected from the free electron model. The properties of the heavy fermion compounds often derive from the partly filled f-orbitals of rare-earth or actinide ions, which behave like localized magnetic moments.

<span class="mw-page-title-main">Alex Zettl</span> American nano-scale physicist

Alex K. Zettl is an American experimental physicist, educator, and inventor.

<span class="mw-page-title-main">Trojan wave packet</span> Wave packet that is nonstationary and nonspreading

A trojan wave packet is a wave packet that is nonstationary and nonspreading. It is part of an artificially created system that consists of a nucleus and one or more electron wave packets, and that is highly excited under a continuous electromagnetic field. Its discovery as one of significant contributions to the Quantum Theory was awarded the 2022 Wigner Medal for Iwo Bialynicki-Birula

Girsh Blumberg is an Estonian-American physicist working in the experimental physics fields of condensed matter physics, spectroscopy, nano-optics, and plasmonics. Blumberg is an elected fellow of the American Physical Society (APS), an elected Fellow of the American Association for the Advancement of Science (FAAAS) , and a Distinguished Professor of Physics at Rutgers University.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

Terahertz spectroscopy detects and controls properties of matter with electromagnetic fields that are in the frequency range between a few hundred gigahertz and several terahertz. In many-body systems, several of the relevant states have an energy difference that matches with the energy of a THz photon. Therefore, THz spectroscopy provides a particularly powerful method in resolving and controlling individual transitions between different many-body states. By doing this, one gains new insights about many-body quantum kinetics and how that can be utilized in developing new technologies that are optimized up to the elementary quantum level.

<span class="mw-page-title-main">Carlos Stroud</span> American physicist

Carlos Ray Stroud, Jr. is an American physicist and educator. Working in the field of quantum optics, Stroud has carried out theoretical and experimental studies in most areas of the field from its beginnings in the late 1960s, studying the fundamentals of the quantum mechanics of atoms and light and their interaction. He has authored over 140 peer-reviewed papers and edited seven books. He is a fellow of the American Physical Society and the Optical Society of America, as well as a Distinguished Traveling Lecturer of the Division of Laser Science of the American Physical Society. In this latter position he travels to smaller colleges giving colloquia and public lectures.

Alan Harold Luther is an American physicist, specializing in condensed matter physics.

References

  1. J. H. Miller; C. Ordóñez; E. Prodan (2000). "Time-correlated soliton tunneling in charge and spin density waves". Physical Review Letters 84 (7): 1555–1558. Bibcode : 2000PhRvL..84.1555M. doi : 10.1103/PhysRevLett.84.1555. PMID   11017566.
  2. J.H. Miller, Jr.; A.I. Wijesinghe; Z. Tang; A.M. Guloy (2012). "Correlated quantum transport of density wave electrons". Physical Review Letters 108 (3): 036404. Bibcode : 2012PhRvL108L36404M. doi : 10.1103/PhysRevLett.108.036404. PMID   22400766.
  3. J.H. Miller, Jr.; A.I. Wijesinghe; Z. Tang; A.M. Guloy (2012). "Coherent quantum transport of charge density waves". Physical Review B 87 (11). arXiv:1212.3020. doi : 10.1103/PhysRevB.87.115127.
  4. J.H. Miller, Jr.; A.I. Wijesinghe; Z. Tang; A.M. Guloy (2013). "Coherent quantum transport of charge density waves". Physical Review B 87 (11): 115127. arXiv:1212.3020. Bibcode : 2013PhRvB..87k5127M. doi : 10.1103/PhysRevB.87.115127
  5. "UH Physicist John Miller on Collective Quantum Tunneling of CDW Electrons".
  6. Miller, J. H.; Wijesinghe, A. I.; Tang, Z.; Guloy, A. M. (2012). "Correlated Quantum Transport of Density Wave Electrons". Physical Review Letters. 108 (3): 036404. arXiv: 1109.4619 . Bibcode:2012PhRvL.108c6404M. doi:10.1103/PhysRevLett.108.036404. PMID   22400766. S2CID   29510494.
  7. Daitch, Vicki; Hoddeson, Lillian (2002-11-28). True Genius: The Life and Science of John Bardeen: The Only Winner of Two Nobel Prizes in Physics. ISBN   0309095115.
  8. E. Prodan, C. Prodan, and J. H. Miller, Jr., The dielectric response of spherical live cells in suspension:An analytic solution. Biophysical Journal, vol. 95, 4174-4184 (2008). PMC   2567925
  9. John H. Miller, Jr., Vijayanand Vajrala, Hans L. Infante, James R. Claycomb, Akilan Palanisami, Jie Fang, and George T. Mercier, Physical mechanisms of biological molecular motors. Physica B, vol. 404, 503-506 (2009). doi : 10.1016/j.physb.2008.11.037
  10. Nonlinear dielectric spectroscopy for label-free detection of respiratory activity in whole cells. G. T.Mercier, A. Palanisami, & J. H. Miller, Jr., Biosensors & Bioelectronics, vol. 25, 2107-2114 (2010). PMC   2896706
  11. Akilan Palanisami, George T. Mercier, Jie Fang, and John H. Miller, Jr., Nonlinear Impedance of Whole Cells Near an Electrode as a Probe of Mitochondrial Activity. Biosensors, vol. 1, pp. 46–57 (2011). doi : 10.3390/bios1020046
  12. D. Padmaraj, J. H. Miller Jr., J. Wosik, W. Zagozdzon-Wosik. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes. Biosensors & Bioelectronics, vol. 29 (1), pp. 13-17 (2011). PMID   21872464
  13. M.H.S. Bukhari and J. H. Miller, Jr., Measurement of intrinsic physiological membrane noise in cultured living cells, Electromagnetic Biology and Medicine, Vol. 29, page 36-51,2010.
  14. M.H.S. Bukhari, J.H.Miller, Jr. and Z.H.Shah, Intrinsic membrane noise in living cells and its coupling to external fields, In Proc. "Computer Research and Development, 2010 Second International Conference on" (ICCRD) https://ieeexplore.ieee.org/document/5489595/
  15. Martha Y. Suárez Villagrán and John H. Miller, Jr., Computational DNA hole spectroscopy: A new tool to predict mutation hotspots, critical base pairs, and disease ‘driver’ mutations. Scientific Reports. Vol. 5, article number: 13571 (2015). doi : 10.1038/srep13571
  16. Martian Soil Biosensors Based on Dielectric Spectroscopy. John H. Miller, Jie Fang, David Warmflash, David S. McKay, Jeffrey A. Jones, and Fathi Karouia. ISSO Y2007, pp61-66, 2008.