John Roth (geneticist)

Last updated
John Roger Roth
John R. Roth.tiff
Born (1939-03-14) March 14, 1939 (age 85)
Alma mater Harvard University (BA)
Johns Hopkins University (PhD)
Umeå University (PhD Honoris Causa)
Occupation Distinguished Professor of Biology
SpouseShery G. Roth
Awards Genetics Society of America Thomas Hunt Morgan Medal (2009) [1]
American Society for Microbiology Lifetime Achievement Award (2015)
Scientific career
FieldsDNA rearrangements
Bacterial genetics
evolution
Institutions University of California, Berkeley
University of Utah
University of California, Davis
Doctoral advisor Phil Hartman

John Roger Roth (born 14 March 1939) [2] is an American geneticist, bacterial physiologist, and evolutionist. He is a Distinguished Professor of Biological Sciences at the University of California, Davis.

He became well known for his early studies on the structure and regulation of the his operon of Salmonella , [3] and went on to investigate regulation in systems as diverse as suppression by tRNA, [4] NAD biosynthesis, [5] and the Vitamin B12-dependent metabolism of small molecules such as ethanolamine and propanediol. [6] In collaboration with David Botstein and Nancy Kleckner, he developed the use of transposons as genetic tools. [7] As a by-product of his study of transposons, he developed an interest in chromosomal duplications, which are frequent in bacteria. [8] He has recently authored several papers on the involvement of such small-effect mutations on evolution under selection. [9]

As instructors of the summer Advanced Bacterial Genetics course at Cold Spring Harbor Laboratory, John Roth, David Botstein, and Ron Davis taught many scientists how to use transposons and other modern molecular genetic tools for analysis of bacteria, leading to important advances in our understanding of the genetics and physiology of bacteria. [2]

In 1988, he became a member of the National Academy of Sciences. [10] In 2009, he was awarded the Thomas Hunt Morgan Medal of the Genetics Society of America, [1] and in 2015, the American Society for Microbiology Lifetime Achievement Award. In 2011, ASM Press published a festschrift in his honor ("The Lure of Bacterial Genetics: A Tribute to John Roth"). [2]

Related Research Articles

<i>Salmonella</i> Genus of bacteria

Salmonella is a genus of rod-shaped (bacillus) gram-negative bacteria of the family Enterobacteriaceae. The two known species of Salmonella are Salmonella enterica and Salmonella bongori. S. enterica is the type species and is further divided into six subspecies that include over 2,650 serotypes. Salmonella was named after Daniel Elmer Salmon (1850–1914), an American veterinary surgeon.

Charles Yanofsky was an American geneticist on the faculty of Stanford University who contributed to the establishment of the one gene-one enzyme hypothesis and discovered attenuation, a riboswitch mechanism in which messenger RNA changes shape in response to a small molecule and thus alters its binding ability for the regulatory region of a gene or operon.

<i>trp</i> operon Operon that codes for the components for production of tryptophan

The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. The operon is regulated so that, when tryptophan is present in the environment, the genes for tryptophan synthesis are repressed.

<i>Salmonella virus P22</i> Species of virus

Salmonella virus P22 is a bacteriophage in the Podoviridae family that infects Salmonella typhimurium. Like many phages, it has been used in molecular biology to induce mutations in cultured bacteria and to introduce foreign genetic material. P22 has been used in generalized transduction and is an important tool for investigating Salmonella genetics.

<span class="mw-page-title-main">Walter Dobrogosz</span>

Walter Dobrogosz is a professor emeritus of North Carolina State University, best known for his discovery and further research on the probiotic bacterium Lactobacillus reuteri.

The L-arabinose operon, also called the ara or araBAD operon, is an operon required for the breakdown of the five-carbon sugar L-arabinose in Escherichia coli. The L-arabinose operon contains three structural genes: araB, araA, araD, which encode for three metabolic enzymes that are required for the metabolism of L-arabinose. AraB (ribulokinase), AraA, and AraD produced by these genes catalyse conversion of L-arabinose to an intermediate of the pentose phosphate pathway, D-xylulose-5-phosphate.

In molecular genetics, a regulon is a group of genes that are regulated as a unit, generally controlled by the same regulatory gene that expresses a protein acting as a repressor or activator. This terminology is generally, although not exclusively, used in reference to prokaryotes, whose genomes are often organized into operons; the genes contained within a regulon are usually organized into more than one operon at disparate locations on the chromosome. Applied to eukaryotes, the term refers to any group of non-contiguous genes controlled by the same regulatory gene.

<span class="mw-page-title-main">Type III secretion system</span> Bacterial virulence factor

The type III secretion system is one of the bacterial secretion systems used by bacteria to secrete their effector proteins into the host's cells to promote virulence and colonisation. While the type III secretion system has been widely regarded as equivalent to the injectisome, many argue that the injectisome is only part of the type III secretion system, which also include structures like the flagellar export apparatus. The T3SS is a needle-like protein complex found in several species of pathogenic gram-negative bacteria.

<span class="mw-page-title-main">GcvB RNA</span>

The gcvB RNA gene encodes a small non-coding RNA involved in the regulation of a number of amino acid transport systems as well as amino acid biosynthetic genes. The GcvB gene is found in enteric bacteria such as Escherichia coli. GcvB regulates genes by acting as an antisense binding partner of the mRNAs for each regulated gene. This binding is dependent on binding to a protein called Hfq. Transcription of the GcvB RNA is activated by the adjacent GcvA gene and repressed by the GcvR gene. A deletion of GcvB RNA from Y. pestis changed colony shape as well as reducing growth. It has been shown by gene deletion that GcvB is a regulator of acid resistance in E. coli. GcvB enhances the ability of the bacterium to survive low pH by upregulating the levels of the alternate sigma factor RpoS. A polymeric form of GcvB has recently been identified. Interaction of GcvB with small RNA SroC triggers the degradation of GcvB by RNase E, lifting the GcvB-mediated mRNA repression of its target genes.

<span class="mw-page-title-main">Precorrin-8X methylmutase</span>

In enzymology, a precorrin-8X methylmutase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Nicotinate-nucleotide—dimethylbenzimidazole phosphoribosyltransferase</span> Class of enzymes

In enzymology, a nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Leucine-responsive regulatory protein</span>

Leucine responsive protein, or Lrp, is a global regulator protein, meaning that it regulates the biosynthesis of leucine, as well as the other branched-chain amino acids, valine and isoleucine. In bacteria, it is encoded by the lrp gene.

<span class="mw-page-title-main">Bacterial microcompartment</span> Organelle-like structure in bacteria with a protein shell containing enzymes

Bacterial microcompartments (BMCs) are organelle-like structures found in bacteria. They consist of a protein shell that encloses enzymes and other proteins. BMCs are typically about 40–200 nanometers in diameter and are made entirely of proteins. The shell functions like a membrane, as it is selectively permeable. Other protein-based compartments found in bacteria and archaea include encapsulin nanocompartments and gas vesicles.

<span class="mw-page-title-main">Naomi Datta</span> British geneticist

Naomi Datta, FRS was a distinguished British geneticist. Working at Hammersmith Hospital in the 1950s and early 1960s, she identified horizontal gene transfer as a source of multi-antibiotic resistance in bacteria.

Transposons are semi-parasitic DNA sequences which can replicate and spread through the host's genome. They can be harnessed as a genetic tool for analysis of gene and protein function. The use of transposons is well-developed in Drosophila and in Thale cress and bacteria such as Escherichia coli.

<span class="mw-page-title-main">Cob(I)yrinic acid a,c-diamide adenosyltransferase</span> Class of enzymes

In molecular biology, cob(I)yrinic acid a,c-diamide adenosyltransferase EC 2.5.1.17 is an enzyme which catalyses the conversion of cobalamin into one of its coenzyme forms, adenosylcobalamin. Adenosylcobalamin is required as a cofactor for the activity of certain enzymes. AdoCbl contains an adenosyl moiety liganded to the cobalt ion of cobalamin via a covalent Co-C bond.

<span class="mw-page-title-main">Flagellar motor switch protein</span>

In molecular biology, the flagellar motor switch protein(Flig) is one of three proteins in certain bacteria coded for by the gene fliG. The other two proteins are FliN coded for by fliN, and FliM coded for by fliM. The protein complex regulates the direction of flagellar rotation and hence controls swimming behaviour. The switch is a complex apparatus that responds to signals transduced by the chemotaxis sensory signalling system during chemotactic behaviour. CheY, the chemotaxis response regulator, is believed to act directly on the switch to induce a switch in the flagellar motor direction of rotation.

The C4-dicarboxylate uptake family or Dcu family is a family of transmembrane ion transporters found in bacteria. Their function is to exchange dicarboxylates such as aspartate, malate, fumarate and succinate.

Transcription-translation coupling is a mechanism of gene expression regulation in which synthesis of an mRNA (transcription) is affected by its concurrent decoding (translation). In prokaryotes, mRNAs are translated while they are transcribed. This allows communication between RNA polymerase, the multisubunit enzyme that catalyzes transcription, and the ribosome, which catalyzes translation. Coupling involves both direct physical interactions between RNA polymerase and the ribosome, as well as ribosome-induced changes to the structure and accessibility of the intervening mRNA that affect transcription.

<span class="mw-page-title-main">Integration host factor</span>

The integration host factor (IHF) is a bacterial DNA binding protein complex that facilitates genetic recombination, replication, and transcription by binding to specific DNA sequences and bending the DNA. It also facilitates the integration of foreign DNA into the host genome. It is a heterodimeric complex composed of two homologous subunits IHFalpha and IHFbeta.

References

  1. 1 2 "Thomas Hunt Morgan Medal". Archived from the original on 2017-02-01. Retrieved 2011-10-13.
  2. 1 2 3 Maloy, S.; Hughes, K.T.; Casadesus, J., eds. (2011). The Lure of Bacterial Genetics: A Tribute to John Roth. Washington, DC: ASM Press. p. 362. ISBN   978-1-55581-538-7.
  3. Johnston, M.; Barnes, W.; Chumley, F.; Bossi, L.; Roth, J.R. (1980). "Model for regulation of the histidine operon of Salmonella". Proc. Natl. Acad. Sci. USA. 77 (1): 508–512. Bibcode:1980PNAS...77..508J. doi: 10.1073/pnas.77.1.508 . PMC   348301 . PMID   6987654.
  4. Hartman, P.; Roth, J.R. (1973). Mechanisms of Suppression. Advances in Genetics. Vol. 17. pp. 1–105. doi:10.1016/S0065-2660(08)60170-4. ISBN   9780120176175. PMID   4585532.
  5. Zhu, N.; Roth, J.R. (1991). "The nadI region of Salmonella typhimurium encodes a bifunctional regulatory protein". J. Bacteriol. 173 (3): 1302–1310. doi:10.1128/jb.173.3.1302-1310.1991. PMC   207255 . PMID   1991723.
  6. Roof, D.M.; Roth, J.R. (1992). "Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella typhimurium". J. Bacteriol. 174 (20): 6634–6643. doi:10.1128/jb.174.20.6634-6643.1992. PMC   207641 . PMID   1328159.
  7. Kleckner, N.; Botstein, D.; Roth, J.R. (1977). "Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics". J. Mol. Biol. 116 (1): 125–159. doi:10.1016/0022-2836(77)90123-1. PMID   338917.
  8. Roth, J.R.; Benson, N.; Galitski, T.; Haack, K.; Lawrence, J.; Miesel, L. (1996). "Rearrangements of the bacterial chromosome: formation and applications". In Neidhardt, F.C.; Curtis, R. III; Ingraham, J.L.; Lin, E.C.C.; Low, K.B.; Magasanik, B.; Reznikoff, W.S.; Riley, M.; Schaechter, M.; Umbarger, H.E. (eds.). Escherichia coli and Salmonella: Cellular and Molecular Biology. Washington, DC: ASM Press. pp. 2256–2276. ISBN   978-1-55581-084-9.
  9. Andersson, D.I.; Hughes, D.; Roth, J.R. (2011). "The origin of mutants under selection: interactions of mutation, growth, and selection, Chapter 5.6.6". In Finkel, S. (ed.). EcoSal -- Escherichia coli and Salmonella: Cellular and Molecular Biology. Vol. 10. Washington, DC: ASM Press. PDF
  10. Members' Directory