K-noid

Last updated
Trinoid Trinoid.png
Trinoid
7-noid 7-noid.png
7-noid

In differential geometry, a k-noid is a minimal surface with k catenoid openings. In particular, the 3-noid is often called trinoid. The first k-noid minimal surfaces were described by Jorge and Meeks in 1983. [1]

The term k-noid and trinoid is also sometimes used for constant mean curvature surfaces, especially branched versions of the unduloid ("triunduloids"). [2]

k-noids are topologically equivalent to k-punctured spheres (spheres with k points removed). k-noids with symmetric openings can be generated using the Weierstrass–Enneper parameterization . [3] This produces the explicit formula

where is the Gaussian hypergeometric function and denotes the real part of .

It is also possible to create k-noids with openings in different directions and sizes, [4] k-noids corresponding to the platonic solids and k-noids with handles. [5]

Related Research Articles

<span class="mw-page-title-main">Gaussian beam</span> Monochrome light beam whose amplitude envelope is a Gaussian function

In optics, a Gaussian beam is an idealized beam of electromagnetic radiation whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. This fundamental (or TEM00) transverse Gaussian mode describes the intended output of many lasers, as such a beam diverges less and can be focused better than any other. When a Gaussian beam is refocused by an ideal lens, a new Gaussian beam is produced. The electric and magnetic field amplitude profiles along a circular Gaussian beam of a given wavelength and polarization are determined by two parameters: the waistw0, which is a measure of the width of the beam at its narrowest point, and the position z relative to the waist.

<span class="mw-page-title-main">Curvature</span> Mathematical measure of how much a curve or surface deviates from flatness

In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or surface is contained in a larger space, curvature can be defined extrinsically relative to the ambient space. Curvature of Riemannian manifolds of dimension at least two can be defined intrinsically without reference to a larger space.

<span class="mw-page-title-main">Riemannian manifold</span> Smooth manifold with an inner product on each tangent space

In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them.

<span class="mw-page-title-main">Hyperboloid</span> Unbounded quadric surface

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Catenoid</span> Surface of revolution of a catenary

In geometry, a catenoid is a type of surface, arising by rotating a catenary curve about an axis. It is a minimal surface, meaning that it occupies the least area when bounded by a closed space. It was formally described in 1744 by the mathematician Leonhard Euler.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

<span class="mw-page-title-main">Minimal surface</span> Surface that locally minimizes its area

In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature.

<span class="mw-page-title-main">Gaussian curvature</span> Product of the principal curvatures of a surface

In differential geometry, the Gaussian curvature or Gauss curvatureΚ of a smooth surface in three-dimensional space at a point is the product of the principal curvatures, κ1 and κ2, at the given point: For example, a sphere of radius r has Gaussian curvature 1/r2 everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus.

<span class="mw-page-title-main">Surface of revolution</span> Surface created by rotating a curve about an axis

A surface of revolution is a surface in Euclidean space created by rotating a curve one full revolution around an axis of rotation . The volume bounded by the surface created by this revolution is the solid of revolution.

<span class="mw-page-title-main">Helicoid</span> Mathematical shape

The helicoid, also known as helical surface, is a smooth surface embedded in three-dimensional space. It is the surface traced by an infinite line that is simultaneously being rotated and lifted along its fixed axis of rotation. It is the third minimal surface to be known, after the plane and the catenoid.

In mathematics, the mean curvature of a surface is an extrinsic measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.

<span class="mw-page-title-main">Snub square antiprism</span> 85th Johnson solid (26 faces)

In geometry, the snub square antiprism is the Johnson solid that can be constructed by snubbing the square antiprism. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids, although it is a relative of the icosahedron that has fourfold symmetry instead of threefold.

<span class="mw-page-title-main">Weierstrass–Enneper parameterization</span> Construction for minimal surfaces

In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.

Aleksei Vasilyevich Pogorelov, was a Soviet mathematician. Specialist in the field of convex and differential geometry, geometric PDEs and elastic shells theory, the author of novel school textbooks on geometry and university textbooks on analytical geometry, on differential geometry, and on the foundations of geometry.

<span class="mw-page-title-main">Enneper surface</span> Minimal surface

In differential geometry and algebraic geometry, the Enneper surface is a self-intersecting surface that can be described parametrically by: It was introduced by Alfred Enneper in 1864 in connection with minimal surface theory.

In differential geometry, Liouville's equation, named after Joseph Liouville, is the nonlinear partial differential equation satisfied by the conformal factor f of a metric f2(dx2 + dy2) on a surface of constant Gaussian curvature K:

<span class="mw-page-title-main">Differential geometry of surfaces</span> The mathematics of smooth surfaces

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric.

<span class="mw-page-title-main">Radius of curvature</span> Radius of the circle which best approximates a curve at a given point

In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof.

<span class="mw-page-title-main">Constant-mean-curvature surface</span>

In differential geometry, constant-mean-curvature (CMC) surfaces are surfaces with constant mean curvature. This includes minimal surfaces as a subset, but typically they are treated as special case.

<span class="mw-page-title-main">William Hamilton Meeks, III</span> American mathematician

William Hamilton Meeks, III is an American mathematician, specializing in differential geometry and minimal surfaces.

References

  1. L. P. Jorge and W. H. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983)
  2. N Schmitt (2007). "Constant Mean Curvature n-noids with Platonic Symmetries". arXiv: math/0702469 .
  3. Matthias Weber (2001). "Classical Minimal Surfaces in Euclidean Space by Examples" (PDF). Indiana.edu. Archived from the original (PDF) on 2019-07-12. Retrieved 2012-10-05.
  4. H. Karcher. "Construction of minimal surfaces, in "Surveys in Geometry", University of Tokyo, 1989, and Lecture Notes No. 12, SFB 256, Bonn, 1989, pp. 1-96" (PDF). Math.uni-bonn-de. Retrieved 2012-10-05.
  5. Jorgen Berglund, Wayne Rossman (1995). "Minimal Surfaces with Catenoid Ends". Pacific J. Math. 171 (2): 353–371. arXiv: 0804.4203 . Bibcode:2008arXiv0804.4203B. doi:10.2140/pjm.1995.171.353. S2CID   11328539.