KIAA0825 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | KIAA0825 , C5orf36, PAPA10 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 617266 MGI: 1919621 HomoloGene: 89234 GeneCards: KIAA0825 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
KIAA0825 is a protein that in humans is encoded by the gene of the same name, located on chromosome 5, 5q15. It is a possible risk factor in Type II Diabetes, and associated with high levels of glucose in the blood. It is a relatively fast mutating gene, compared to other coding genes. There is however one region which is highly conserved across the species that have the gene, known as DUF4495. It is predicted to travel between the nucleus and the cytoplasm.
KIAA0825 is gene that appears to be a genetic factor that increases the risk of Type II Diabetes, possibly by increasing the level of blood glucose levels. [5] It has also been identified as a possible oncogene. [6] C5orf36 has one common alias KIAA0825. The gene is about 478 kb long and contains 22 exons. It produces 10 different variants: 9 alternatively spliced, and one un-spliced version. The longest experimentally confirmed mRNA is 7240 bp long and produces a protein 1275 amino acids long. [7] The protein is predicted to weigh about 147.8kDal. It has orthologs in most animals including Aplysia californica , but is not found outside animals with the possible exception of Plasmodiophora brassicae.
The protein has a predicted weight of 147.8 kDal. [8] [9] It does not contain a known nuclear localization signal but does contain a nuclear export signal. [10] The subcellular localization for the protein is predicted to be the nucleus and the cytoplasm. [11] This suggests that the protein might shuttle back and forth across the nuclear membrane.
Several programs suggest that the secondary structure of the protein is mainly helices with only a few beta sheets. [12] [13] [14] [15] Analysis of protein composition also suggests that the protein has relatively low levels of glycine. [16] This could suggest a fairly rigid structure relative to other proteins. The tertiary structure is harder to predict due to the size of the protein, partially due to its size. The 3-D structure shown shows a prediction made by I-TASSER. This is a possible strture with a C-score of -1.06 on a scale from -5 to 1 (in which the higher the number the greater the confidence). [17] [18] [19] This predicted structure indicates there are two main parts, and it is possible they interact depending on the state of the protein (e.g. whether or not it's phosphorylated).
The mRNA for KIAA0825 is expressed at relatively low rates in comparison to other mRNAs. [20] The protein however is expressed at relatively high rates, especially in parts of the brain as well as adrenal glands and the thyroid. [21] This would suggest that the protein is not readily degraded and remains in the cell for long periods of time, such that continuous transcription of the DNA into mRNA is unnecessary. No current finding suggest that there is alternative expression of different isoforms in different tissues.
Analysis of the promoter offers some insight into the expression of KIAA0825. [22] One possible regulator found is the NeuroD1 transcription factor. This factor is an important regulator for the insulin gene, and a mutation in this gene can lead to Type II diabetes. [23] This could explain why KIAA0825 is expressed at lower levels in patients with Type II diabetes. Another possible transcription factor is the Myeloid zinc finger 1 factor, which is tied to myeloid leukemia, because it delays apoptosis of cells in the presence of retinoic acid. [24] There are also several places where Vertebrate SMAD family transcription factors can bind. These transcription factors are thought to be responsible for nucleocytoplasmic dynamics. [25] This means that these SMAD transcription factors could affect KIAA0825, because subcellular localization suggests it shuttles across the nuclear envelope.
There are two proteins found to interact with KIAA0825. One is Interleukin enhancer-binding factor 3. [26] ILF3 is a factor that complexes with other proteins and regulates gene expression and stabilizes mRNAs. [27] The other is the Amyloid-beta precursor protein. [28] This protein is an integral membrane protein found most commonly in the synapses of neurons. Neither of these proteins is well enough understood to indicate for certain the role of C5orf36 in human cells. They however suggest that KIAA0825 could serve a variety of roles in different parts of the cell.
KIAA0825 orthologs can be found in virtually all animals, but cannot be found in plants, bacteria, or protozoa. It is mostly highly conserved in vertebrates especially mammals, but genes that contain region similar to DUF4495 region can be found in California sea hare, generally one of the most simple animal. The size especially in mammals is well conserved sticking very close to between 1250 and 1300 amino acids long. This suggests that the protein wraps around on itself forming important structures for its function.
There were no paralogs found of the gene KIAA0825 in humans or in any other species.
Splicing factor 3B subunit 3 is a protein that in humans is encoded by the SF3B3 gene.
Protein YIF1A is a Yip1 domain family proteins that in humans is encoded by the YIF1A gene.
Solute carrier family 46 member 3 (SLC46A3) is a protein that in humans is encoded by the SLC46A3 gene. Also referred to as FKSG16, the protein belongs to the major facilitator superfamily (MFS) and SLC46A family. Most commonly found in the plasma membrane and endoplasmic reticulum (ER), SLC46A3 is a multi-pass membrane protein with 11 α-helical transmembrane domains. It is mainly involved in the transport of small molecules across the membrane through the substrate translocation pores featured in the MFS domain. The protein is associated with breast and prostate cancer, hepatocellular carcinoma (HCC), papilloma, glioma, obesity, and SARS-CoV. Based on the differential expression of SLC46A3 in antibody-drug conjugate (ADC)-resistant cells and certain cancer cells, current research is focused on the potential of SLC46A3 as a prognostic biomarker and therapeutic target for cancer. While protein abundance is relatively low in humans, high expression has been detected particularly in the liver, small intestine, and kidney.
C8orf48 is a protein that in humans is encoded by the C8orf48 gene. C8orf48 is a nuclear protein specifically predicted to be located in the nuclear lamina. C8orf48 has been found to interact with proteins that are involved in the regulation of various cellular responses like gene expression, protein secretion, cell proliferation, and inflammatory responses. This protein has been linked to breast cancer and papillary thyroid carcinoma.
Leukocyte Receptor Cluster Member 9 is an uncharacterized protein encoded by the LENG9 gene. In humans, LENG9 is predicted to play a role in fertility and reproductive disorders associated with female endometrium structures.
Uncharacterized protein C2orf73 is a protein that in humans is encoded by the C2orf73 gene. The protein is predicted to be localized to the nucleus.
Transmembrane protein 255A is a protein that is encoded by the TMEM255A gene. TMEM255A is often referred to as family with sequence similarity 70, member A (FAM70A). The TMEM255A protein is transmembrane and is predicted to be located the nuclear envelope of eukaryote organisms.
Proline-rich protein 30 is a protein in humans that is encoded for by the PRR30 gene. PRR30 is a member in the family of Proline-rich proteins characterized by their intrinsic lack of structure. Copy number variations in the PRR30 gene have been associated with an increased risk for neurofibromatosis.
C16orf82 is a protein that, in humans, is encoded by the C16orf82 gene. C16orf82 encodes a 2285 nucleotide mRNA transcript which is translated into a 154 amino acid protein using a non-AUG (CUG) start codon. The gene has been shown to be largely expressed in the testis, tibial nerve, and the pituitary gland, although expression has been seen throughout a majority of tissue types. The function of C16orf82 is not fully understood by the scientific community.
SHLD1 or shieldin complex subunit 1 is a gene on chromosome 20. The C20orf196 gene encodes an mRNA that is 1,763 base pairs long, and a protein that is 205 amino acids long.
Chromosome 18 open reading frame 63 is a protein which in humans is encoded by the C18orf63 gene. This protein is not yet well understood by the scientific community. Research has been conducted suggesting that C18orf63 could be a potential biomarker for early stage pancreatic cancer and breast cancer.
Chromosome 1 open reading frame 112, is a protein that in humans is encoded by the C1orf112 gene, and is located at position 1q24.2. C1orf112 encodes for seventeen variants of mRNA, fifteen of which are functional proteins. C1orf112 has a determined precursor molecular weight of 96.6 kDa and an isoelectric point of 5.62. C1orf112 has been experimentally determined to localize to the mitochondria, although it does not contain a mitochondrial targeting sequence.
C2orf16 is a protein that in humans is encoded by the C2orf16 gene. Isoform 2 of this protein is 1,984 amino acids long. The gene contains 1 exon and is located at 2p23.3. Aliases for C2orf16 include Open Reading Frame 16 on Chromosome 2 and P-S-E-R-S-H-H-S Repeats Containing Sequence.
C7orf50 is a gene in humans that encodes a protein known as C7orf50. This gene is ubiquitously expressed in the kidneys, brain, fat, prostate, spleen, among 22 other tissues and demonstrates low tissue specificity. C7orf50 is conserved in chimpanzees, Rhesus monkeys, dogs, cows, mice, rats, and chickens, along with 307 other organisms from mammals to fungi. This protein is predicted to be involved with the import of ribosomal proteins into the nucleus to be assembled into ribosomal subunits as a part of rRNA processing. Additionally, this gene is predicted to be a microRNA (miRNA) protein coding host gene, meaning that it may contain miRNA genes in its introns and/or exons.
ProteinFAM89A is a protein which in humans is encoded by the FAM89A gene. It is also known as chromosome 1 open reading frame 153 (C1orf153). Highest FAM89A gene expression is observed in the placenta and adipose tissue. Though its function is largely unknown, FAM89A is found to be differentially expressed in response to interleukin exposure, and it is implicated in immune responses pathways and various pathologies such as atherosclerosis and glioma cell expression.
Serum amyloid A-like 1 is a protein in humans encoded by the SAAL1 gene.
OCEL1, also called Occludin//ELL Domain Containing 1, is a protein encoding gene located at chromosome 19p13.11 in the human genome. Other aliases for the gene include FLJ22709, FWP009, and S863-9. The function of OCEL1 has not yet been identified.
Family with sequence 98, member C or FAM98C is a gene that encodes for FAM98C has two aliases FLJ44669 and hypothetical protein LOC147965. FAM98C has two paralogs in humans FAM98A and FAM98B. FAM98C can be characterized for being a Leucine-rich protein. The function of FAM98C is still not defined. FAM98C has orthologs in mammals, reptiles, and amphibians and has a distant orhtologs in Rhinatrema bivittatum and Nanorana parkeri.
Solute carrier family 66 member 3 is a gene in humans that encodes the protein SLC66A3. The function of the SLC66A3 protein is not yet well understood but belongs to a family of five evolutionarily related proteins, the SLC66 lysosomal amino acid transporters. SLC66A3 is localized to the endoplasmic reticulum and has four transmembrane domains.
C13orf42 is a protein which, in humans, is encoded by the gene chromosome 13 open reading frame 42 (C13orf42). RNA sequencing data shows low expression of the C13orf42 gene in a variety of tissues. The C13orf42 protein is predicted to be localized in the mitochondria, nucleus, and cytosol. Tertiary structure predictions for C13orf42 indicate multiple alpha helices.