Karl Mollweide

Last updated • a couple of secsFrom Wikipedia, The Free Encyclopedia
Karl Mollweide
Born
Karl Brandan Mollweide

(1774-02-03)3 February 1774
Died10 March 1825(1825-03-10) (aged 51)
Leipzig, Saxony, Germany
NationalityGerman
Occupation(s) Mathematician, astronomer

Karl Brandan Mollweide (3 February 1774 10 March 1825) was a German mathematician [1] and astronomer who taught in Halle and Leipzig. In trigonometry, he rediscovered the formula now known as Mollweide's formula. He invented a map projection called the Mollweide projection.

Karl Mollweide Karl Mollweide.png
Karl Mollweide

Related Research Articles

<span class="mw-page-title-main">August Ferdinand Möbius</span> German mathematician and astronomer (1790–1868)

August Ferdinand Möbius was a German mathematician and theoretical astronomer.

<span class="mw-page-title-main">Map projection</span> Systematic representation of the surface of a sphere or ellipsoid onto a plane

In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography.

<span class="mw-page-title-main">Stereographic projection</span> Particular mapping that projects a sphere onto a plane

In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere, onto a plane perpendicular to the diameter through the point. It is a smooth, bijective function from the entire sphere except the center of projection to the entire plane. It maps circles on the sphere to circles or lines on the plane, and is conformal, meaning that it preserves angles at which curves meet and thus locally approximately preserves shapes. It is neither isometric nor equiareal.

<span class="mw-page-title-main">Structural formula</span> Graphic representation of a molecular structure

The structural formula of a chemical compound is a graphic representation of the molecular structure, showing how the atoms are possibly arranged in the real three-dimensional space. The chemical bonding within the molecule is also shown, either explicitly or implicitly. Unlike other chemical formula types, which have a limited number of symbols and are capable of only limited descriptive power, structural formulas provide a more complete geometric representation of the molecular structure. For example, many chemical compounds exist in different isomeric forms, which have different enantiomeric structures but the same molecular formula. There are multiple types of ways to draw these structural formulas such as: Lewis structures, condensed formulas, skeletal formulas, Newman projections, Cyclohexane conformations, Haworth projections, and Fischer projections.

<span class="mw-page-title-main">World map</span> Map of most or all of the surface of the Earth

A world map is a map of most or all of the surface of Earth. World maps, because of their scale, must deal with the problem of projection. Maps rendered in two dimensions by necessity distort the display of the three-dimensional surface of the Earth. While this is true of any map, these distortions reach extremes in a world map. Many techniques have been developed to present world maps that address diverse technical and aesthetic goals.

<span class="mw-page-title-main">Mollweide projection</span> Pseudocylindrical equal-area map projection

The Mollweide projection is an equal-area, pseudocylindrical map projection generally used for maps of the world or celestial sphere. It is also known as the Babinet projection, homalographic projection, homolographic projection, and elliptical projection. The projection trades accuracy of angle and shape for accuracy of proportions in area, and as such is used where that property is needed, such as maps depicting global distributions.

<span class="mw-page-title-main">Xplanet</span> Renderer for planetary and Solar System images

Xplanet is a renderer for planetary and Solar System images, capable of producing various types of graphics depicting the Solar System. It is normally used to create computer wallpapers, which may be updated with the latest cloud maps or the regions of Earth which are in sunlight. Xplanet is free software released under the GNU GPL.

<span class="mw-page-title-main">Goode homolosine projection</span> Pseudocylindrical equal-area map projection

The Goode homolosine projection is a pseudocylindrical, equal-area, composite map projection used for world maps. Normally it is presented with multiple interruptions, most commonly of the major oceans. Its equal-area property makes it useful for presenting spatial distribution of phenomena.

<span class="mw-page-title-main">Aitoff projection</span> Pseudoazimuthal compromise map projection

The Aitoff projection is a modified azimuthal map projection proposed by David A. Aitoff in 1889. Based on the equatorial form of the azimuthal equidistant projection, Aitoff first halves longitudes, then projects according to the azimuthal equidistant, and then stretches the result horizontally into a 2:1 ellipse to compensate for having halved the longitudes.

<span class="mw-page-title-main">Hammer projection</span> Pseudoazimuthal equal-area map projection

The Hammer projection is an equal-area map projection described by Ernst Hammer in 1892. Using the same 2:1 elliptical outer shape as the Mollweide projection, Hammer intended to reduce distortion in the regions of the outer meridians, where it is extreme in the Mollweide.

<span class="mw-page-title-main">Tobler hyperelliptical projection</span> Pseudocylindrical equal-area map projection

The Tobler hyperelliptical projection is a family of equal-area pseudocylindrical projections that may be used for world maps. Waldo R. Tobler introduced the construction in 1973 as the hyperelliptical projection, now usually known as the Tobler hyperelliptical projection.

Mollweide may refer to:

<span class="mw-page-title-main">Mollweide's formula</span> Relation between sides and angles of a triangle

In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle.

Blue Glacier is a large glacier which flows into Bowers Piedmont Glacier about 10 nautical miles south of New Harbour, in Victoria Land, Antarctica. It was discovered by the British National Antarctic Expedition (BrNAE) under Robert Falcon Scott, 1901–04, who gave it this name because of its clear blue ice at the time of discovery.

<span class="mw-page-title-main">Law of cotangents</span> Trigonometric identity relating the sides and angles of a triangle

In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles.

The Winkel projection is a group of three map projections proposed in 1921 by the German cartographer Oswald Winkel.

<span class="mw-page-title-main">Boggs eumorphic projection</span> Pseudocylindrical equal-area map projection

The Boggs eumorphic projection is a pseudocylindrical, equal-area map projection used for world maps. Normally it is presented with multiple interruptions. Its equal-area property makes it useful for presenting spatial distribution of phenomena. The projection was developed in 1929 by Samuel Whittemore Boggs (1889–1954) to provide an alternative to the Mercator projection for portraying global areal relationships. Boggs was geographer for the United States Department of State from 1924 until his death. The Boggs eumorphic projection has been used occasionally in textbooks and atlases.

<span class="mw-page-title-main">Strebe 1995 projection</span> Pseudoazimuthal equal-area map projection

The Strebe 1995 projection, Strebe projection, Strebe lenticular equal-area projection, or Strebe equal-area polyconic projection is an equal-area map projection presented by Daniel "daan" Strebe in 1994. Strebe designed the projection to keep all areas proportionally correct in size; to push as much of the inevitable distortion as feasible away from the continental masses and into the Pacific Ocean; to keep a familiar equatorial orientation; and to do all this without slicing up the map.

<span class="mw-page-title-main">Interruption (map projection)</span>

In map projections, an interruption is any place where the globe has been split. All map projections are interrupted at at least one point. Typical world maps are interrupted along an entire meridian. In that typical case, the interruption forms an east/west boundary, even though the globe has no boundaries.

<span class="mw-page-title-main">Equal-area projection</span> Type of map projection

In cartography, an equivalent, authalic, or equal-area projection is a map projection that preserves relative area measure between any and all map regions. Equivalent projections are widely used for thematic maps showing scenario distribution such as population, farmland distribution, forested areas, and so forth, because an equal-area map does not change apparent density of the phenomenon being mapped.

References

  1. Sullivan, Michael (2006-01-01). Precalculus. Pearson Custom Publishing. p. 680. ISBN   978-0-536-91924-3 . Retrieved 27 September 2011.