LANCL2

Last updated
LANCL2
Identifiers
Aliases LANCL2 , GPR69B, TASP, LanC like 2
External IDs OMIM: 612919 MGI: 1919085 HomoloGene: 23116 GeneCards: LANCL2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_018697

NM_133737

RefSeq (protein)

NP_061167

NP_598498

Location (UCSC) Chr 7: 55.37 – 55.43 Mb Chr 6: 57.68 – 57.72 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

LanC-like protein 2 is a protein that in humans is encoded by the LANCL2 gene. [5] [6] It is a protein broadly expressed in the plasma a nuclear membranes of immune, epithelial and muscle cells and a potential therapeutic target for chronic inflammatory, metabolic and immune-mediated diseases such as Crohn's disease and diabetes. [7]

Contents

Function

The natural ligand of LANCL2, abscisic acid (ABA), has been identified as a new endogenous mammalian hormone implicated in glycemic control. The mammalian ABA receptor has been identified as LANCL2 on the basis of (1) modeling predictions, [8] (2) direct and specific ABA binding to the purified recombinant protein, [9] and (3) abrogation of the functional effects of ABA by silencing of LANCL2 expression in ABA-sensitive cells. [10]

Selective binding between LANCL2 and ABA or other ligands such as the benzimidazole NSC61610 and piperazine BT-11, [11] lead to elevation of intracellular cAMP, activation of PKA [12] and suppression of inflammation [12] in macrophages. In hepatocytes, LANCL2 regulates cell survival by phosphorylation of Akt through its interaction with the Akt kinase mTORC2. [13] Active mTORC2 causes translocation of GLUT4 to the plasma membrane and stimulates glucose uptake. [14] LANCL2 expression in immune cells, adipose tissue, skeletal muscle and pancreas, and the potential to manipulate LANCL2 signaling and GLUT4 translocation with ABA make this G protein-coupled receptor a novel therapeutic target for glycemic control. [7] In humans, ABA release was detected with increasing glycemia, although this mechanism failed in people suffering from type 2 and gestational diabetes. Also, plasma ABA concentrations increase after oral glucose load (OGTT) in healthy subjects. [15] ABA stimulates glucose-dependent insulin release from human and rodent pancreatic β-cells. [15] At a low dose (micrograms/Kg body weight) oral ABA significantly reduces both glycemia and insulinemia in rats and in humans undergoing an OGTT [16] indicating that ABA reduces the amount of insulin required to control hyperglycemia. This insulin-sparing effect suggests that LANCL2 can be used as a therapeutic target for the treatment of inflammatory and metabolic diseases such as metabolic syndrome, prediabetes and diabetes.

Novel LANCL2 ligands such as BT-11 significantly decrease disease activity in the Dextran Sodium Sulfate (DSS)-induced model of acute colitis and the IL-10-/- mice and CD4+ T cell transfer-induced chronic colitis models. [11] BT-11 treatment decreased leukocytic infiltration, mucosal thickening and epithelial erosion in the colon, decreased Th1 and Th17 CD4+ T cells and TNFα while increasing regulatory T cells, LANCL2 and IL-10 expression. [11]

Related Research Articles

<span class="mw-page-title-main">Allosteric regulation</span> Regulation of enzyme activity

In biochemistry, allosteric regulation is the regulation of an enzyme by binding an effector molecule at a site other than the enzyme's active site.

<span class="mw-page-title-main">Abscisic acid</span> Plant hormone

Abscisic acid is a plant hormone. ABA functions in many plant developmental processes, including seed and bud dormancy, the control of organ size and stomatal closure. It is especially important for plants in the response to environmental stresses, including drought, soil salinity, cold tolerance, freezing tolerance, heat stress and heavy metal ion tolerance.

<span class="mw-page-title-main">Glycogen synthase</span> Enzyme class, includes all types of glycogen/starch synthases

Glycogen synthase is a key enzyme in glycogenesis, the conversion of glucose into glycogen. It is a glycosyltransferase that catalyses the reaction of UDP-glucose and n to yield UDP and n+1.

mTOR Mammalian protein found in humans

The mammalian target of rapamycin (mTOR), also referred to as the mechanistic target of rapamycin, and sometimes called FK506-binding protein 12-rapamycin-associated protein 1 (FRAP1), is a kinase that in humans is encoded by the MTOR gene. mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases.

<span class="mw-page-title-main">Human serum albumin</span> Albumin found in human blood

Human serum albumin is the serum albumin found in human blood. It is the most abundant protein in human blood plasma; it constitutes about half of serum protein. It is produced in the liver. It is soluble in water, and it is monomeric.

<span class="mw-page-title-main">Glucagon-like peptide-1 receptor</span> Receptor activated by peptide hormone GLP-1

The glucagon-like peptide-1 receptor (GLP1R) is a G protein-coupled receptor (GPCR) found on beta cells of the pancreas and on neurons of the brain. It is involved in the control of blood sugar level by enhancing insulin secretion. In humans it is synthesised by the gene GLP1R, which is present on chromosome 6. It is a member of the glucagon receptor family of GPCRs. GLP1R is composed of two domains, one extracellular (ECD) that binds the C-terminal helix of GLP-1, and one transmembrane (TMD) domain that binds the N-terminal region of GLP-1. In the TMD domain there is a fulcrum of polar residues that regulates the biased signaling of the receptor while the transmembrane helical boundaries and extracellular surface are a trigger for biased agonism.

A helminth protein, or helminthic antigen, is a protein derived from a parasitic worm that causes an immune reaction. When secreted, these proteins may modify the host's immune response in order to promote longevity of the parasite. Helminth proteins can result in a deregulated response to infection, and are implicated in reduced reactivity to other antigens. Other helminth proteins promote parasite survival in other ways, particularly since parasites must depend on hosts for the supply of essential nutrients. Despite their pathogenic properties, helminth proteins have potential to be co-opted to treat a number of other human diseases.

<span class="mw-page-title-main">Fatty acid-binding protein</span>

The fatty-acid-binding proteins (FABPs) are a family of transport proteins for fatty acids and other lipophilic substances such as eicosanoids and retinoids. These proteins are thought to facilitate the transfer of fatty acids between extra- and intracellular membranes. Some family members are also believed to transport lipophilic molecules from outer cell membrane to certain intracellular receptors such as PPAR. The FABPs are intracellular carriers that “solubilize” the endocannabinoid anandamide (AEA), transporting AEA to the breakdown by FAAH, and compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids are also discovered to bind human FABPs that function as intracellular carriers, as THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. Levels of fatty-acid-binding protein have been shown to decline with ageing in the mouse brain, possibly contributing to age-associated decline in synaptic activity.

<span class="mw-page-title-main">Formyl peptide receptor 2</span> Protein-coding gene in the species Homo sapiens

N-formyl peptide receptor 2 (FPR2) is a G-protein coupled receptor (GPCR) located on the surface of many cell types of various animal species. The human receptor protein is encoded by the FPR2 gene and is activated to regulate cell function by binding any one of a wide variety of ligands including not only certain N-Formylmethionine-containing oligopeptides such as N-Formylmethionine-leucyl-phenylalanine (FMLP) but also the polyunsaturated fatty acid metabolite of arachidonic acid, lipoxin A4 (LXA4). Because of its interaction with lipoxin A4, FPR2 is also commonly named the ALX/FPR2 or just ALX receptor.

<span class="mw-page-title-main">GPR31</span> Protein in humans

G-protein coupled receptor 31 also known as 12-(S)-HETE receptor is a protein that in humans is encoded by the GPR31 gene. The human gene is located on chromosome 6q27 and encodes a G-protein coupled receptor protein composed of 319 amino acids.

<span class="mw-page-title-main">TAS1R2</span> Protein

T1R2 - Taste receptor type 1 member 2 is a protein that in humans is encoded by the TAS1R2 gene.

<span class="mw-page-title-main">PDK4</span> Protein-coding gene in the species Homo sapiens

Pyruvate dehydrogenase lipoamide kinase isozyme 4, mitochondrial (PDK4) is an enzyme that in humans is encoded by the PDK4 gene. It codes for an isozyme of pyruvate dehydrogenase kinase.

<span class="mw-page-title-main">RICTOR</span> Protein-coding gene in the species Homo sapiens

Rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR) is a protein that in humans is encoded by the RICTOR gene.

<span class="mw-page-title-main">Carbohydrate-responsive element-binding protein</span> Protein found in humans

Carbohydrate-responsive element-binding protein (ChREBP) also known as MLX-interacting protein-like (MLXIPL) is a protein that in humans is encoded by the MLXIPL gene. The protein name derives from the protein's interaction with carbohydrate response element sequences of DNA.

<span class="mw-page-title-main">Chemerin</span> Protein-coding gene in the species Homo sapiens

Chemerin, also known as retinoic acid receptor responder protein 2 (RARRES2), tazarotene-induced gene 2 protein (TIG2), or RAR-responsive protein TIG2 is a protein that in humans is encoded by the RARRES2 gene.

<span class="mw-page-title-main">Forkhead box protein O1</span> Protein

Forkhead box protein O1 (FOXO1), also known as forkhead in rhabdomyosarcoma (FKHR), is a protein that in humans is encoded by the FOXO1 gene. FOXO1 is a transcription factor that plays important roles in regulation of gluconeogenesis and glycogenolysis by insulin signaling, and is also central to the decision for a preadipocyte to commit to adipogenesis. It is primarily regulated through phosphorylation on multiple residues; its transcriptional activity is dependent on its phosphorylation state.

<span class="mw-page-title-main">FOXA3</span> Protein-coding gene in the species Homo sapiens

Hepatocyte nuclear factor 3-gamma (HNF-3G), also known as forkhead box protein A3 (FOXA3) or transcription factor 3G (TCF-3G) is a protein that in humans is encoded by the FOXA3 gene.

In recent years it has become apparent that the environment and underlying mechanisms affect gene expression and the genome outside of the central dogma of biology. It has been found that many epigenetic mechanisms are involved in the regulation and expression of genes such as DNA methylation and chromatin remodeling. These epigenetic mechanisms are believed to be a contributing factor to pathological diseases such as type 2 diabetes. An understanding of the epigenome of Diabetes patients may help to elucidate otherwise hidden causes of this disease.

mTOR Complex 2 (mTORC2) is an acutely rapamycin-insensitive protein complex formed by serine/threonine kinase mTOR that regulates cell proliferation and survival, cell migration and cytoskeletal remodeling. The complex itself is rather large, consisting of seven protein subunits. The catalytic mTOR subunit, DEP domain containing mTOR-interacting protein (DEPTOR), mammalian lethal with sec-13 protein 8, and TTI1/TEL2 complex are shared by both mTORC2 and mTORC1. Rapamycin-insensitive companion of mTOR (RICTOR), mammalian stress-activated protein kinase interacting protein 1 (mSIN1), and protein observed with rictor 1 and 2 (Protor1/2) can only be found in mTORC2. Rictor has been shown to be the scaffold protein for substrate binding to mTORC2.

<span class="mw-page-title-main">Fluridone</span> Chemical compound

Fluridone is an organic compound that is used as aquatic herbicide often used to control invasive plants. It is used in the United States to control hydrilla and Eurasian watermilfoil among other species. Fluridone is sold as a solution and as a slow release solid because the herbicide level must be maintained for several weeks. The compound is a colorless solid.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000132434 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000062190 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Mayer H, Pongratz M, Prohaska R (Dec 2001). "Molecular cloning, characterization, and tissue-specific expression of human LANCL2, a novel member of the LanC-like protein family". DNA Sequence. 12 (3): 161–6. doi:10.3109/10425170109080770. PMID   11762191. S2CID   43695440.
  6. "Entrez Gene: LANCL2 LanC lantibiotic synthetase component C-like 2 (bacterial)".
  7. 1 2 Lu P, Hontecillas R, Philipson CW, Bassaganya-Riera J (Jun 2014). "Lanthionine synthetase component C-like protein 2: a new drug target for inflammatory diseases and diabetes". Current Drug Targets. 15 (6): 565–72. doi:10.2174/1389450115666140313123714. PMID   24628287.
  8. Lu P, Bevan DR, Lewis SN, Hontecillas R, Bassaganya-Riera J (Mar 2011). "Molecular modeling of lanthionine synthetase component C-like protein 2: a potential target for the discovery of novel type 2 diabetes prophylactics and therapeutics". Journal of Molecular Modeling. 17 (3): 543–53. doi:10.1007/s00894-010-0748-y. PMID   20512604. S2CID   22559285.
  9. Sturla L, Fresia C, Guida L, Grozio A, Vigliarolo T, Mannino E, Millo E, Bagnasco L, Bruzzone S, De Flora A, Zocchi E (Nov 2011). "Binding of abscisic acid to human LANCL2". Biochemical and Biophysical Research Communications. 415 (2): 390–5. doi:10.1016/j.bbrc.2011.10.079. PMID   22037458.
  10. Sturla L, Fresia C, Guida L, Bruzzone S, Scarfì S, Usai C, Fruscione F, Magnone M, Millo E, Basile G, Grozio A, Jacchetti E, Allegretti M, De Flora A, Zocchi E (Oct 2009). "LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells". The Journal of Biological Chemistry. 284 (41): 28045–57. doi: 10.1074/jbc.M109.035329 . PMC   2788856 . PMID   19667068.
  11. 1 2 3 "Lanthionine synthetase C-like 2: A novel therapeutic target for inflammatory bowel disease | NIMML". www.nimml.org. Retrieved 2016-02-09.
  12. 1 2 Bassaganya-Riera J, Guri AJ, Lu P, Climent M, Carbo A, Sobral BW, Horne WT, Lewis SN, Bevan DR, Hontecillas R (Jan 2011). "Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma". The Journal of Biological Chemistry. 286 (4): 2504–16. doi: 10.1074/jbc.M110.160077 . PMC   3024745 . PMID   21088297.
  13. Zeng M, van der Donk WA, Chen J (Dec 2014). "Lanthionine synthetase C-like protein 2 (LanCL2) is a novel regulator of Akt". Molecular Biology of the Cell. 25 (24): 3954–61. doi:10.1091/mbc.E14-01-0004. PMC   4244203 . PMID   25273559.
  14. Sato M, Dehvari N, Oberg AI, Dallner OS, Sandström AL, Olsen JM, Csikasz RI, Summers RJ, Hutchinson DS, Bengtsson T (Dec 2014). "Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle". Diabetes. 63 (12): 4115–29. doi: 10.2337/db13-1860 . PMID   25008179.
  15. 1 2 Bruzzone S, Ameri P, Briatore L, Mannino E, Basile G, Andraghetti G, Grozio A, Magnone M, Guida L, Scarfì S, Salis A, Damonte G, Sturla L, Nencioni A, Fenoglio D, Fiory F, Miele C, Beguinot F, Ruvolo V, Bormioli M, Colombo G, Maggi D, Murialdo G, Cordera R, De Flora A, Zocchi E (Mar 2012). "The plant hormone abscisic acid increases in human plasma after hyperglycemia and stimulates glucose consumption by adipocytes and myoblasts". FASEB Journal. 26 (3): 1251–60. doi: 10.1096/fj.11-190140 . PMID   22075645. S2CID   19413693.
  16. Magnone M, Ameri P, Salis A, Andraghetti G, Emionite L, Murialdo G, De Flora A, Zocchi E (Dec 2015). "Microgram amounts of abscisic acid in fruit extracts improve glucose tolerance and reduce insulinemia in rats and in humans". FASEB Journal. 29 (12): 4783–93. doi: 10.1096/fj.15-277731 . PMID   26243865. S2CID   9371779.

Further reading