LGP2

Last updated
DHX58
Protein DHX58 PDB 2RQA.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DHX58 , D11LGP2, D11lgp2e, LGP2, RLR-3, DEXH-box helicase 58
External IDs OMIM: 608588 MGI: 1931560 HomoloGene: 69371 GeneCards: DHX58
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_024119

NM_030150

RefSeq (protein)

NP_077024

NP_084426

Location (UCSC) Chr 17: 42.1 – 42.11 Mb Chr 11: 100.59 – 100.6 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Probable ATP-dependent RNA helicase DHX58 also known as RIG-I-like receptor 3 (RLR-3) or RIG-I-like receptor LGP2 (RLR) is a RIG-I-like receptor dsRNA helicase enzyme that in humans is encoded by the DHX58 gene. [5] [6] The protein encoded by the gene DHX58 is known as LGP2 (Laboratory of Genetics and Physiology 2). [5] [7] [8]

Contents

Structure and function

LGP2 was first identified and characterized in the context of mammary tissue in 2001, [5] but its function has been found to be more relevant to the field of innate antiviral immunity. LGP2 has been found to be essential for producing effective antiviral responses against many viruses that are recognized by RIG-I and MDA5. [9]

Since LGP2 lacks CARD domains, its effect on downstream antiviral signaling is likely due to interaction with dsRNA viral ligand or the other RLRs (RIG-I and MDA5). [10]

LGP2 has been shown to directly interact [10] with RIG-I through its C-terminal repressor domain (RD). The primary contact sites in this interaction is likely between the RD of LGP2 and the CARD or helicase domain of RIG-I as it is seen with RIG-I self-association, [10] but this has not been confirmed. The helicase activity of LGP2 has been found to be essential for its positive regulation of RIG-I signaling. [9] Overexpression of LGP2 is able to inhibit RIG-I-mediated antiviral signaling both in the presence and absence of viral ligands. [10] [11] [12] This inhibition of RIG-I signaling is not dependent upon the ability of LGP2 to bind viral ligands and is therefore not due to ligand competition. [7] [13] Although LGP2 binds to dsRNA with higher affinity, [12] it is dispensable for RIG-I-mediated recognition of synthetic dsRNA ligands. [9] RIG-I, when overexpressed [7] and in LGP2 knock-down studies, [14] has been shown to induce antiviral response in the absence of viral ligand.

Related Research Articles

<span class="mw-page-title-main">Helicase</span> Class of enzymes to unpack an organisms genes

Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating two hybridized nucleic acid strands, using energy from ATP hydrolysis. There are many helicases, representing the great variety of processes in which strand separation must be catalyzed. Approximately 1% of eukaryotic genes code for helicases.

Transfection is the process of deliberately introducing naked or purified nucleic acids into eukaryotic cells. It may also refer to other methods and cell types, although other terms are often preferred: "transformation" is typically used to describe non-viral DNA transfer in bacteria and non-animal eukaryotic cells, including plant cells. In animal cells, transfection is the preferred term as transformation is also used to refer to progression to a cancerous state (carcinogenesis) in these cells. Transduction is often used to describe virus-mediated gene transfer into eukaryotic cells.

Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed, mainly, by cells of the innate immune system, such as dendritic cells, macrophages, monocytes, neutrophils and epithelial cells, to identify two classes of molecules: pathogen-associated molecular patterns (PAMPs), which are associated with microbial pathogens, and damage-associated molecular patterns (DAMPs), which are associated with components of host's cells that are released during cell damage or death. They are also called primitive pattern recognition receptors because they evolved before other parts of the immune system, particularly before adaptive immunity. PRRs also mediate the initiation of antigen-specific adaptive immune response and release of inflammatory cytokines.

<span class="mw-page-title-main">Toll-like receptor 3</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 3 (TLR3) also known as CD283 is a protein that in humans is encoded by the TLR3 gene. TLR3 is a member of the toll-like receptor family of pattern recognition receptors of the innate immune system. TLR3 recognizes double-stranded RNA in endosomes, which is a common feature of viral genomes internalised by macrophages and dendritic cells.

<span class="mw-page-title-main">Ribonuclease L</span> Enzyme found in humans

Ribonuclease L or RNase L, known sometimes as ribonuclease 4 or 2'-5' oligoadenylate synthetase-dependent ribonuclease, is an interferon (IFN)-induced ribonuclease which, upon activation, destroys all RNA within the cell. RNase L is an enzyme that in humans is encoded by the RNASEL gene.

<span class="mw-page-title-main">RIG-I</span> Mammalian protein found in humans

RIG-I is a cytosolic pattern recognition receptor (PRR) that can mediate induction of a type-I interferon (IFN1) response. RIG-I is an essential molecule in the innate immune system for recognizing cells that have been infected with a virus. These viruses can include West Nile virus, Japanese Encephalitis virus, influenza A, Sendai virus, flavivirus, and coronaviruses.

<span class="mw-page-title-main">RNA Helicase A</span> Protein-coding gene in the species Homo sapiens

ATP-dependent RNA helicase A is an enzyme that in humans is encoded by the DHX9 gene.

<span class="mw-page-title-main">DDX3X</span> Protein-coding gene in humans

ATP-dependent RNA helicase DDX3X is an enzyme that in humans is encoded by the DDX3X gene.

<span class="mw-page-title-main">RARRES3</span> Protein-coding gene in the species Homo sapiens

Retinoic acid receptor responder protein 3 is a protein that in humans is encoded by the RARRES3 gene.

<span class="mw-page-title-main">Mitochondrial antiviral-signaling protein</span> Protein-coding gene in the species Homo sapiens

Mitochondrial antiviral-signaling protein (MAVS) is a protein that is essential for antiviral innate immunity. MAVS is located in the outer membrane of the mitochondria, peroxisomes, and mitochondrial-associated endoplasmic reticulum membrane (MAM). Upon viral infection, a group of cytosolic proteins will detect the presence of the virus and bind to MAVS, thereby activating MAVS. The activation of MAVS leads the virally infected cell to secrete cytokines. This induces an immune response which kills the host's virally infected cells, resulting in clearance of the virus.

<span class="mw-page-title-main">SKIV2L</span> Protein-coding gene in the species Homo sapiens

Helicase SKI2W is an enzyme that in humans is encoded by the SKIV2L gene. This enzyme is a human homologue of yeast SKI2, which may be involved in antiviral activity by blocking translation of poly(A) deficient mRNAs. The SKIV2L gene is located in the class III region of the major histocompatibility complex.

<span class="mw-page-title-main">TRIM25</span> Protein-coding gene in the species Homo sapiens

Tripartite motif-containing protein 25 is a protein that in humans is encoded by the TRIM25 gene.

<span class="mw-page-title-main">MDA5</span> Mammalian protein found in Homo sapiens

MDA5 is a RIG-I-like receptor dsRNA helicase enzyme that is encoded by the IFIH1 gene in humans. MDA5 is part of the RIG-I-like receptor (RLR) family, which also includes RIG-I and LGP2, and functions as a pattern recognition receptor capable of detecting viruses. It is generally believed that MDA5 recognizes double stranded RNA (dsRNA) over 2000nts in length, however it has been shown that whilst MDA5 can detect and bind to cytoplasmic dsRNA, it is also activated by a high molecular weight RNA complex composed of ssRNA and dsRNA. For many viruses, effective MDA5-mediated antiviral responses are dependent on functionally active LGP2. The signaling cascades in MDA5 is initiated via CARD domain. Some observations made in cancer cells show that MDA5 also interacts with cellular RNA is able to induce an autoinflammatory response.

<span class="mw-page-title-main">DHX36</span> Protein-coding gene in the species Homo sapiens

Probable ATP-dependent RNA helicase DHX36 also known as DEAH box protein 36 (DHX36) or MLE-like protein 1 (MLEL1) or G4 resolvase 1 (G4R1) or RNA helicase associated with AU-rich elements (RHAU) is an enzyme that in humans is encoded by the DHX36 gene.

<span class="mw-page-title-main">DHX15</span> Protein-coding gene in the species Homo sapiens

Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 is an enzyme that in humans is encoded by the DHX15 gene.

<span class="mw-page-title-main">DHX32</span> Protein-coding gene in the species Homo sapiens

Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX32 is an enzyme that in humans is encoded by the DHX32 gene.

<span class="mw-page-title-main">DHX16</span> Protein-coding gene in the species Homo sapiens

Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 is an enzyme that in humans is encoded by the DHX16 gene.

RIG-I-like receptors are a type of intracellular pattern recognition receptor involved in the recognition of viruses by the innate immune system. RIG-I is the best characterized receptor within the RIG-I like receptor (RLR) family. Together with MDA5 and LGP2, this family of cytoplasmic pattern recognition receptors (PRRs) are sentinels for intracellular viral RNA that is a product of viral infection. The RLR receptors provide frontline defence against viral infections in most tissues.

<span class="mw-page-title-main">Stimulator of interferon genes</span> Protein-coding gene in the species Homo sapiens

Stimulator of interferon genes (STING), also known as transmembrane protein 173 (TMEM173) and MPYS/MITA/ERIS is a protein that in humans is encoded by the STING1 gene.

<span class="mw-page-title-main">DHX29</span> Protein-coding gene in the species Homo sapiens

DExH-box helicase 29 (DHX29) is a 155 kDa protein that in humans is encoded by the DHX29 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000108771 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000017830 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 Cui Y, Li M, Walton KD, Sun K, Hanover JA, Furth PA, Hennighausen L (Dec 2001). "The Stat3/5 locus encodes novel endoplasmic reticulum and helicase-like proteins that are preferentially expressed in normal and neoplastic mammary tissue". Genomics. 78 (3): 129–34. doi:10.1006/geno.2001.6661. hdl: 2027.42/175385 . PMID   11735219.
  6. "Entrez Gene: LGP2 likely ortholog of mouse D11lgp2".
  7. 1 2 3 Childs K, Randall R, Goodbourn S (April 2012). "Paramyxovirus V proteins interact with the RNA Helicase LGP2 to inhibit RIG-I-dependent interferon induction". J. Virol. 86 (7): 3411–21. doi:10.1128/JVI.06405-11. PMC   3302505 . PMID   22301134.
  8. Matsumiya T, Stafforini DM (2010). "Function and regulation of retinoic acid-inducible gene-I". Crit. Rev. Immunol. 30 (6): 489–513. doi:10.1615/critrevimmunol.v30.i6.10. PMC   3099591 . PMID   21175414.
  9. 1 2 3 Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, Tsujimura T, Fujita T, Akira S, Takeuchi O (January 2010). "LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses". Proc. Natl. Acad. Sci. U.S.A. 107 (4): 1512–7. Bibcode:2010PNAS..107.1512S. doi: 10.1073/pnas.0912986107 . PMC   2824407 . PMID   20080593.
  10. 1 2 3 4 Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, Akira S, Fujita T, Gale M (January 2007). "Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2". Proc. Natl. Acad. Sci. U.S.A. 104 (2): 582–7. Bibcode:2007PNAS..104..582S. doi: 10.1073/pnas.0606699104 . PMC   1766428 . PMID   17190814.
  11. Rothenfusser S, Goutagny N, DiPerna G, Gong M, Monks BG, Schoenemeyer A, Yamamoto M, Akira S, Fitzgerald KA (October 2005). "The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I". J. Immunol. 175 (8): 5260–8. doi: 10.4049/jimmunol.175.8.5260 . PMID   16210631.
  12. 1 2 Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M, Akira S, Yonehara S, Kato A, Fujita T (September 2005). "Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity". J. Immunol. 175 (5): 2851–8. doi: 10.4049/jimmunol.175.5.2851 . PMID   16116171.
  13. Wang Y, Ludwig J, Schuberth C, Goldeck M, Schlee M, Li H, Juranek S, Sheng G, Micura R, Tuschl T, Hartmann G, Patel DJ (July 2010). "Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I". Nat. Struct. Mol. Biol. 17 (7): 781–7. doi:10.1038/nsmb.1863. PMC   3744876 . PMID   20581823.
  14. Burel SA, Machemer T, Ragone FL, Kato H, Cauntay P, Greenlee S, Salim A, Gaarde WA, Hung G, Peralta R, Freier SM, Henry SP (July 2012). "Unique O-Methoxyethyl Ribose-DNA Chimeric Oligonucleotide Induces an Atypical Melanoma Differentiation-Associated Gene 5-Dependent Induction of Type I Interferon Response". J. Pharmacol. Exp. Ther. 342 (1): 150–62. doi:10.1124/jpet.112.193789. PMID   22505629. S2CID   1899247.

Further reading