LMTK3

Last updated
LMTK3
Identifiers
Aliases LMTK3 , LMR3, PPP1R101, TYKLM3, lemur tyrosine kinase 3
External IDs MGI: 3039582 HomoloGene: 79449 GeneCards: LMTK3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001080434
NM_001388485

NM_001005511
NM_001290990

RefSeq (protein)

NP_001073903

NP_001005511
NP_001277919

Location (UCSC) Chr 19: 48.49 – 48.51 Mb Chr 7: 45.43 – 45.45 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Lemur tail kinase 3 is a protein that in humans is encoded by the LMTK3 gene. [5] [6]

Contents

LMTK3 is often overexpressed in human cancers where it promotes tumour growth, invasion and metastasis and therapy resistance. [5] It was first identified in 2011 through a kinase screen of regulators of ERα by Giamas et al. [7] who found that it promotes upregulation of ERα through PKC inhibition and inhibits ERα degradation through direct phosphorylation of ERα. Numerous other studies have linked LMTK3 to cancer in glioblastoma, [8] non-small cell lung cancer, [9] thyroid malignancies [10] and bladder cancer, [11] among others. A small molecule inhibitor, C28, has now been developed for LMTK3 which shows potent anti-cancer activity in vitro and in vivo.

Function

The most well-characterised physiological role of LMTK3 is in the central nervous system. LMTK3 is expressed in the cerebral cortex, striatum, cerebellum, hippocampus, olfactory bulb and tubercle. [12] LMTK3 knockout mice are more hyperactive and show less signs of anxiety than wild-type counterparts. In addition, the mice showed lower levels of depression-like behaviour in forced swim tests and tail suspension assays. [13] LMTK3 knockout mice also have cognitive impairments and show behaviour related to schizophrenia and bipolar disorder. This may be due to impairment in GluA1 trafficking in neurons. [14] These studies show that LMTK3 plays an important role in the central nervous system.

Clinical significance

LMTK3 is implicated in a number of human cancers as an oncogene as well as a potential predictive or prognostic biomarker. [5] The most well-known role of LMTK3 is in ERα signalling. In 2011, Giamas et al. showed that LMTK3 is a potent regulator of ERα through a kinome-wide siRNA screen. [7] By examining the effect of depletion of different genes of the expression of an ERα-regulated gene, they showed that LMTK3 knockdown significantly reduces ERα activity. LMTK3 phosphorylates ERα, increasing stability and protecting ERα from proteasomal degradation. LMTK3 also inhibits PKC, reducing AKT activity and therefore allowing accumulation of FoxO3 in cells, lifting inhibition of ESR1 transcription, causing an increase in ERα expression. An in vivo model also showed that LMTK3 siRNA reduces tumour growth in mice injected with MCF7 ER+ cells. Later analyses of clinical data show that LMTK3 is predictive and prognostic in breast cancer. High nuclear and cytoplasmic staining in breast cancer cells for LMTK3 is associated with poor clinical outcomes . [15]

LMTK3 is also associated with endocrine resistance in breast cancer. [16] Stebbing et al. showed that LMTK3 regulates a number of genes involved in tamoxifen resistance. LMTK3 overexpression also promotes chemotherapy resistance in breast cancer cells. [17]

Later, another study by Giamas' group revealed that LMTK3 is strongly associated with cell invasiveness and metastasis through regulation of integrin subunits. [18] LMTK3 acts through GRB2, inducing RAS activation and CDC42 activation, leading to increased ITGA5 and ITGB1 expression through the transcription factor, serum response factor (SRF). The group also showed that LMTK3 has nuclear roles where is facilitates the interaction between KAP1 (Krüppel-associated box domain-associated protein 1) and a KAP1 phosphatase, PP1α (protein phosphatase 1α). [19] This results in trimethylation of Histone H3 lysine 9 (H3K9me3) at tumour suppressor-like genes, resulting in silencing and a downregulation of tumour suppressors in breast cancer.

Giamas' group discovered the small molecule inhibitor, C28 in 2020 which is a potent, selective inhibitor of LMTK3. [20] C28 is an orally available and highly selective ATP-competitive inhibitor of LMTK3. Data from the NCI-60 cell line panel and experiments in xenografts show that the drug is an effective inhibitor of breast cancer growth in vivo. LMTK3 is an HSP90-CDC37 client protein which requires this interaction for folding and stability. C28 is a competitive inhibitor of LMTK3 that also deprives LMTK3 of HSP90, promoting instability and degradation of LMTK3. More recently, another compound, C36 has been characterised as a selective inhibitor of LMTK3 with apoptosis-promoting properties in breast cancer cells. [21]

Related Research Articles

<span class="mw-page-title-main">Tumor necrosis factor</span> Protein

Tumor necrosis factor is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homologous TNF domain.

<span class="mw-page-title-main">Estrogen receptor</span> Proteins activated by the hormone estrogen

Estrogen receptors (ERs) are a group of proteins found inside cells. They are receptors that are activated by the hormone estrogen (17β-estradiol). Two classes of ER exist: nuclear estrogen receptors, which are members of the nuclear receptor family of intracellular receptors, and membrane estrogen receptors (mERs), which are mostly G protein-coupled receptors. This article refers to the former (ER).

<span class="mw-page-title-main">Insulin-like growth factor 1 receptor</span> Cell surface tyrosine kinase associated receptor, quiche mediates the effects of Igf-1

The insulin-like growth factor 1 (IGF-1) receptor is a protein found on the surface of human cells. It is a transmembrane receptor that is activated by a hormone called insulin-like growth factor 1 (IGF-1) and by a related hormone called IGF-2. It belongs to the large class of tyrosine kinase receptors. This receptor mediates the effects of IGF-1, which is a polypeptide protein hormone similar in molecular structure to insulin. IGF-1 plays an important role in growth and continues to have anabolic effects in adults – meaning that it can induce hypertrophy of skeletal muscle and other target tissues. Mice lacking the IGF-1 receptor die late in development, and show a dramatic reduction in body mass. This testifies to the strong growth-promoting effect of this receptor.

<span class="mw-page-title-main">Estrogen receptor alpha</span> Protein-coding gene in the species Homo sapiens

Estrogen receptor alpha (ERα), also known as NR3A1, is one of two main types of estrogen receptor, a nuclear receptor that is activated by the sex hormone estrogen. In humans, ERα is encoded by the gene ESR1.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 3</span> Protein-coding gene in humans

Mothers against decapentaplegic homolog 3 also known as SMAD family member 3 or SMAD3 is a protein that in humans is encoded by the SMAD3 gene.

<span class="mw-page-title-main">Cyclin-dependent kinase 6</span> Protein-coding gene in the species Homo sapiens

Cell division protein kinase 6 (CDK6) is an enzyme encoded by the CDK6 gene. It is regulated by cyclins, more specifically by Cyclin D proteins and Cyclin-dependent kinase inhibitor proteins. The protein encoded by this gene is a member of the cyclin-dependent kinase, (CDK) family, which includes CDK4. CDK family members are highly similar to the gene products of Saccharomyces cerevisiae cdc28, and Schizosaccharomyces pombe cdc2, and are known to be important regulators of cell cycle progression in the point of regulation named R or restriction point.

<span class="mw-page-title-main">Maspin</span> Protein-coding gene in the species Homo sapiens

Maspin is a protein that in humans is encoded by the SERPINB5 gene. This protein belongs to the serpin superfamily. SERPINB5 was originally reported to function as a tumor suppressor gene in epithelial cells, suppressing the ability of cancer cells to invade and metastasize to other tissues. Furthermore, and consistent with an important biological function, Maspin knockout mice were reported to be non-viable, dying in early embryogenesis. However, a subsequent study using viral transduction as a method of gene transfer was not able to reproduce the original findings and found no role for maspin in tumour biology. Furthermore, the latter study demonstrated that maspin knockout mice are viable and display no obvious phenotype. These data are consistent with the observation that maspin is not expressed in early embryogenesis. The precise molecular function of maspin is thus currently unknown.

<span class="mw-page-title-main">Estrogen receptor beta</span> Protein-coding gene in the species Homo sapiens

Estrogen receptor beta (ERβ) also known as NR3A2 is one of two main types of estrogen receptor—a nuclear receptor which is activated by the sex hormone estrogen. In humans ERβ is encoded by the ESR2 gene.

<span class="mw-page-title-main">ERBB3</span> Protein found in humans

Receptor tyrosine-protein kinase erbB-3, also known as HER3, is a membrane bound protein that in humans is encoded by the ERBB3 gene.

<span class="mw-page-title-main">STK11</span> Protein-coding gene in the species Homo sapiens

Serine/threonine kinase 11 (STK11) also known as liver kinase B1 (LKB1) or renal carcinoma antigen NY-REN-19 is a protein kinase that in humans is encoded by the STK11 gene.

<span class="mw-page-title-main">RhoC</span> Protein-coding gene in the species Homo sapiens

RhoC is a small signaling G protein, and is a member of the Rac subfamily of the family Rho family of GTPases. It is encoded by the gene RHOC.

<span class="mw-page-title-main">TNK2</span> Protein-coding gene in the species Homo sapiens

Activated CDC42 kinase 1, also known as ACK1, is an enzyme that in humans is encoded by the TNK2 gene. TNK2 gene encodes a non-receptor tyrosine kinase, ACK1, that binds to multiple receptor tyrosine kinases e.g. EGFR, MERTK, AXL, HER2 and insulin receptor (IR). ACK1 also interacts with Cdc42Hs in its GTP-bound form and inhibits both the intrinsic and GTPase-activating protein (GAP)-stimulated GTPase activity of Cdc42Hs. This binding is mediated by a unique sequence of 47 amino acids C-terminal to an SH3 domain. The protein may be involved in a regulatory mechanism that sustains the GTP-bound active form of Cdc42Hs and which is directly linked to a tyrosine phosphorylation signal transduction pathway. Several alternatively spliced transcript variants have been identified from this gene, but the full-length nature of only two transcript variants has been determined.

<span class="mw-page-title-main">CDKN2D</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase 4 inhibitor D is an enzyme that in humans is encoded by the CDKN2D gene.

<span class="mw-page-title-main">LATS1</span> Protein-coding gene in the species Homo sapiens

Large tumor suppressor kinase 1 (LATS1) is an enzyme that in humans is encoded by the LATS1 gene.

<span class="mw-page-title-main">PAK5</span>

Serine/threonine-protein kinase PAK 5 is an enzyme that in humans is encoded by the PAK5 gene.

<span class="mw-page-title-main">LAPTM4B</span> Protein-coding gene in the species Homo sapiens

Lysosomal-associated transmembrane protein 4B is a protein that in humans is encoded by the LAPTM4B gene.

<span class="mw-page-title-main">KIAA1524</span> Protein-coding gene in the species Homo sapiens

Protein CIP2A also known as cancerous inhibitor of PP2A (CIP2A) is a protein that in humans is encoded by the KIAA1524 gene.

<span class="mw-page-title-main">ROR1</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase transmembrane receptor ROR1, also known as neurotrophic tyrosine kinase, receptor-related 1 (NTRKR1), is an enzyme that in humans is encoded by the ROR1 gene. ROR1 is a member of the receptor tyrosine kinase-like orphan receptor (ROR) family.

<span class="mw-page-title-main">FOXA1</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein A1 (FOXA1), also known as hepatocyte nuclear factor 3-alpha (HNF-3A), is a protein that in humans is encoded by the FOXA1 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000142235 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000062044 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 Ditsiou A, Gagliano T, Samuels M, Vella V, Tolias C, Giamas G (September 2021). "The multifaceted role of lemur tyrosine kinase 3 in health and disease". Open Biology. 11 (9): 210218. doi:10.1098/rsob.210218. PMC   8478525 . PMID   34582708.
  6. Wendler F, Purice TM, Simon T, Stebbing J, Giamas G (September 2021). "The LMTK-family of kinases: Emerging important players in cell physiology and pathogenesis" (PDF). Biochimica et Biophysica Acta. Molecular Basis of Disease. 1867 (9): 165372. doi:10.1016/j.bbadis.2018.12.023. PMID   30597196.
  7. 1 2 Giamas G, Filipović A, Jacob J, Messier W, Zhang H, Yang D, et al. (June 2011). "Kinome screening for regulators of the estrogen receptor identifies LMTK3 as a new therapeutic target in breast cancer". Nature Medicine. 17 (6): 715–719. doi:10.1038/nm.2351. PMID   21602804. S2CID   5279914.
  8. Fazi B, Felsani A, Grassi L, Moles A, D'Andrea D, Toschi N, et al. (September 2015). "The transcriptome and miRNome profiling of glioblastoma tissues and peritumoral regions highlights molecular pathways shared by tumors and surrounding areas and reveals differences between short-term and long-term survivors". Oncotarget. 6 (26): 22526–22552. doi:10.18632/oncotarget.4151. PMC   4673180 . PMID   26188123.
  9. Xu Z, Qi X, Zhang X, Yu L (May 2014). "Preoperative serum LMTK3 as a novel biomarker in non-small cell lung cancer". Tumour Biology. 35 (5): 5007–5011. doi:10.1007/s13277-014-1660-3. PMID   24510346. S2CID   14656556.
  10. Lu L, Yuan X, Zhang Q, Zhang H, Shen B (April 2017). "LMTK3 knockdown retards cell growth and invasion and promotes apoptosis in thyroid cancer". Molecular Medicine Reports. 15 (4): 2015–2022. doi:10.3892/mmr.2017.6262. PMC   5364963 . PMID   28260052.
  11. Jiang T, Lu X, Yang F, Wang M, Yang H, Xing N (October 2020). "LMTK3 promotes tumorigenesis in bladder cancer via the ERK/MAPK pathway". FEBS Open Bio. 10 (10): 2107–2121. doi:10.1002/2211-5463.12964. PMC   7530379 . PMID   32865871.
  12. Kawa S, Fujimoto J, Tezuka T, Nakazawa T, Yamamoto T (March 2004). "Involvement of BREK, a serine/threonine kinase enriched in brain, in NGF signalling". Genes to Cells. 9 (3): 219–232. doi:10.1111/j.1356-9597.2004.00714.x. PMID   15005709.
  13. Inoue T, Hoshina N, Nakazawa T, Kiyama Y, Kobayashi S, Abe T, et al. (April 2014). "LMTK3 deficiency causes pronounced locomotor hyperactivity and impairs endocytic trafficking". The Journal of Neuroscience. 34 (17): 5927–5937. doi:10.1523/JNEUROSCI.1621-13.2014. PMC   6608282 . PMID   24760852.
  14. Montrose K, Kobayashi S, Manabe T, Yamamoto T (August 2019). "Lmtk3-KO Mice Display a Range of Behavioral Abnormalities and Have an Impairment in GluA1 Trafficking". Neuroscience. 414: 154–167. doi:10.1016/j.neuroscience.2019.06.033. PMID   31310731. S2CID   195937172.
  15. Stebbing J, Filipovic A, Ellis IO, Green AR, D'Silva TR, Lenz HJ, et al. (April 2012). "LMTK3 expression in breast cancer: association with tumor phenotype and clinical outcome". Breast Cancer Research and Treatment. 132 (2): 537–544. doi:10.1007/s10549-011-1622-z. PMID   21671015. S2CID   19222468.
  16. Stebbing J, Filipovic A, Lit LC, Blighe K, Grothey A, Xu Y, et al. (July 2013). "LMTK3 is implicated in endocrine resistance via multiple signaling pathways". Oncogene. 32 (28): 3371–3380. doi:10.1038/onc.2012.343. PMID   22869149.
  17. Stebbing J, Shah K, Lit LC, Gagliano T, Ditsiou A, Wang T, et al. (June 2018). "LMTK3 confers chemo-resistance in breast cancer". Oncogene. 37 (23): 3113–3130. doi:10.1038/s41388-018-0197-0. PMC   5992129 . PMID   29540829.
  18. Xu Y, Zhang H, Lit LC, Grothey A, Athanasiadou M, Kiritsi M, et al. (June 2014). "The kinase LMTK3 promotes invasion in breast cancer through GRB2-mediated induction of integrin β₁". Science Signaling. 7 (330): ra58. doi:10.1126/scisignal.2005170. PMID   24939894. S2CID   7831460.
  19. Xu Y, Zhang H, Nguyen VT, Angelopoulos N, Nunes J, Reid A, et al. (August 2015). "LMTK3 Represses Tumor Suppressor-like Genes through Chromatin Remodeling in Breast Cancer". Cell Reports. 12 (5): 837–849. doi:10.1016/j.celrep.2015.06.073. hdl: 10044/1/33933 . PMID   26212333.
  20. Ditsiou A, Cilibrasi C, Simigdala N, Papakyriakou A, Milton-Harris L, Vella V, et al. (November 2020). "The structure-function relationship of oncogenic LMTK3". Science Advances. 6 (46). Bibcode:2020SciA....6.3099D. doi:10.1126/sciadv.abc3099. PMC   7673765 . PMID   33188023.
  21. Agnarelli A, Lauer Betrán A, Papakyriakou A, Vella V, Samuels M, Papanastasopoulos P, et al. (January 2023). "The Inhibitory Properties of a Novel, Selective LMTK3 Kinase Inhibitor". International Journal of Molecular Sciences. 24 (1): 865. doi: 10.3390/ijms24010865 . PMC   9821308 . PMID   36614307.