Leucine-rich repeat-containing protein 8D is a protein that in humans is encoded by the LRRC8D gene. [5] Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8A, LRRC8B, LRRC8C, and LRRC8E, is a subunit of the heteromer protein Volume-Regulated Anion Channel. [6] Volume-Regulated Anion Channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, [7] and that is not the only function these channels have been linked to.
While LRRC8D is one of many proteins that can be part of VRAC, it is in fact one of the most important subunits for the channel’s ability to function; the other protein of importance is LRRC8A. [8] [9] However, while we know it is necessary for specific VRAC function, other studies have found that it is not sufficient for the full range of usual VRAC activity. [10] This is where the other LRRC8 proteins come in, as the different composition of these subunits affects the range of specificity for VRACs. [11] [12]
In addition to its role in VRACs, the LRRC8 protein family is also associated with agammaglobulinemia-5. [13]
Chloride channels are a superfamily of poorly understood ion channels specific for chloride. These channels may conduct many different ions, but are named for chloride because its concentration in vivo is much higher than other anions. Several families of voltage-gated channels and ligand-gated channels have been characterized in humans.
Activator protein 1 (AP-1) is a transcription factor that regulates gene expression in response to a variety of stimuli, including cytokines, growth factors, stress, and bacterial and viral infections. AP-1 controls a number of cellular processes including differentiation, proliferation, and apoptosis. The structure of AP-1 is a heterodimer composed of proteins belonging to the c-Fos, c-Jun, ATF and JDP families.
Kv7.2 (KvLQT2) is a voltage- and lipid-gated potassium channel protein coded for by the gene KCNQ2.
Leucine-rich repeat-containing protein 4 is a protein that in humans is encoded by the LRRC4 gene.
F-box/LRR-repeat protein 5 is a protein that in humans is encoded by the FBXL5 gene.
Leucine-rich repeats and death domain containing, also known as LRDD or p53-induced protein with a death domain (PIDD), is a protein which in humans is encoded by the LRDD gene.
Leucine rich repeat containing 7 also known as LRRC7, Densin-180, or LAP1 is a protein which in humans is encoded by the LRRC7 gene.
Leucine-rich repeat-containing protein 41 is a protein that in humans is encoded by the LRRC41 gene.
Leucine-rich repeat-containing protein 8A is a protein that in humans is encoded by the LRRC8A gene. Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8B, LRRC8C, LRRC8D, and LRRC8E, is a subunit of the heteromer protein volume-regulated anion channel (VRAC). (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to.
Leucine-rich repeat-containing protein 23 is a protein that in humans is encoded by the LRRC23 gene.
Leucine-rich repeat-containing protein 8E is a protein that in humans is encoded by the LRRC8E gene. Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8A, LRRC8B, LRRC8C, and LRRC8D, is sometimes a subunit of the heteromer protein volume-regulated anion channel. Volume-Regulated Anion Channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to.
Leucine-rich repeat-containing protein 17 is a protein that in humans is encoded by the LRRC17 gene.
Leucine rich repeat containing 57, also known as LRRC57, is a protein that in humans is encoded by the LRRC57 gene.
Leucine-rich repeat-containing protein 50 is a protein that in humans is encoded by the LRRC50 gene.
Leucine rich repeat containing 15 is a protein that in humans is encoded by the LRRC15 gene.
Leucine rich repeat containing 24 is a protein that, in humans, is encoded by the LRRC24 gene. The protein is represented by the official symbol LRRC24, and is alternatively known as LRRC14OS. The function of LRRC24 is currently unknown. It is a member of the leucine-rich repeat (LRR) superfamily of proteins.
Volume-regulated anion channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to. Some research has also suggested that VRACs may be water-permeable as well.
Leucine-rich repeat-containing protein 8B is a protein that in humans is encoded by the LRRC8B gene. Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8A, LRRC8C, LRRC8D, and LRRC8E, is sometimes a subunit of the heteromer protein volume-regulated anion channel (VRAC). VRACs are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to.
Leucine-rich repeat-containing protein 8C is a protein that in humans is encoded by the LRRC8C gene. Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8A, LRRC8B, LRRC8D, and LRRC8E, is sometimes a subunit of the heteromer protein Volume-Regulated Anion Channel. Volume-Regulated Anion Channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to.
Leucine rich repeat containing 26 (LRRC26) is a protein that in humans is encoded by the LRRC26 gene.