LRRC8E

Last updated
LRRC8E
Identifiers
Aliases LRRC8E , leucine rich repeat containing 8 family member E, leucine rich repeat containing 8 VRAC subunit E
External IDs OMIM: 612891 MGI: 1919517 HomoloGene: 11817 GeneCards: LRRC8E
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001268284
NM_001268285
NM_025061

NM_028175

RefSeq (protein)

NP_001255213
NP_001255214
NP_079337

NP_082451

Location (UCSC) Chr 19: 7.89 – 7.9 Mb Chr 8: 4.28 – 4.29 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Leucine-rich repeat-containing protein 8E is a protein that in humans is encoded by the LRRC8E gene. [5] Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8A, LRRC8B, LRRC8C, and LRRC8D, is sometimes a subunit of the heteromer protein volume-regulated anion channel. [6] Volume-Regulated Anion Channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, [7] and that is not the only function these channels have been linked to.

While LRRC8E is one of many proteins that can be part of VRAC, research has found that it is not as crucial to the activity of the channel in comparison to LRRC8A and LRRC8D. [8] [9] [10] However, while we know that LRRC8A and LRRC8D are necessary for VRAC function, other studies have found that they are not sufficient for the full range of usual VRAC activity. [11] This is where the other LRRC8 proteins come in, such as LRRC8E, as the different composition of these subunits affects the range of specificity for VRACs. [12] [10]

In addition to its role in VRACs, the LRRC8 protein family is also associated with agammaglobulinemia-5. [13]

Specifically for LRRC8E, there has been a recent study that found that this gene was nominally associated with panic disorder. [14]

Related Research Articles

<span class="mw-page-title-main">ATF4</span> Mammalian protein found in Homo sapiens

Activating transcription factor 4 , also known as ATF4, is a protein that in humans is encoded by the ATF4 gene.

<span class="mw-page-title-main">CLCN5</span> Mammalian protein found in Homo sapiens

The CLCN5 gene encodes the chloride channel Cl-/H+ exchanger ClC-5. ClC-5 is mainly expressed in the kidney, in particular in proximal tubules where it participates to the uptake of albumin and low-molecular-weight proteins, which is one of the principal physiological role of proximal tubular cells. Mutations in the CLCN5 gene cause an X-linked recessive nephropathy named Dent disease characterized by excessive urinary loss of low-molecular-weight proteins and of calcium (hypercalciuria), nephrocalcinosis and nephrolithiasis.

<span class="mw-page-title-main">LRRC4</span>

Leucine-rich repeat-containing protein 4 is a protein that in humans is encoded by the LRRC4 gene.

<span class="mw-page-title-main">LRRC7</span>

Leucine rich repeat containing 7 also known as LRRC7, Densin-180, or LAP1 is a protein which in humans is encoded by the LRRC7 gene.

<span class="mw-page-title-main">LRRC8D</span> Protein-coding gene in the species Homo sapiens

Leucine-rich repeat-containing protein 8D is a protein that in humans is encoded by the LRRC8D gene. Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8A, LRRC8B, LRRC8C, and LRRC8E, is a subunit of the heteromer protein Volume-Regulated Anion Channel. Volume-Regulated Anion Channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to.

<span class="mw-page-title-main">LRRC41</span> Protein-coding gene in the species Homo sapiens

Leucine-rich repeat-containing protein 41 is a protein that in humans is encoded by the LRRC41 gene.

<span class="mw-page-title-main">CLIC5</span>

Chloride intracellular channel protein 5 is a protein that in humans is encoded by the CLIC5 gene.

<span class="mw-page-title-main">LRRC8A</span> Protein-coding gene in the species Homo sapiens

Leucine-rich repeat-containing protein 8A is a protein that in humans is encoded by the LRRC8A gene. Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8B, LRRC8C, LRRC8D, and LRRC8E, is a subunit of the heteromer protein volume-regulated anion channel (VRAC). (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to.

<span class="mw-page-title-main">LRRC48</span>

Leucine-rich repeat-containing protein 48 is a protein that in humans is encoded by the LRRC48 gene.

<span class="mw-page-title-main">LRRC23</span>

Leucine-rich repeat-containing protein 23 is a protein that in humans is encoded by the LRRC23 gene.

<span class="mw-page-title-main">LRRC39</span> Protein-coding gene in the species Homo sapiens

Leucine-rich repeat-containing protein 39 is a protein that in humans is encoded by the LRRC39 gene.

<span class="mw-page-title-main">LRRC17</span>

Leucine-rich repeat-containing protein 17 is a protein that in humans is encoded by the LRRC17 gene.

<span class="mw-page-title-main">LRRC57</span>

Leucine rich repeat containing 57, also known as LRRC57 is a protein encoded in humans by the LRRC57 gene.

<span class="mw-page-title-main">LRRC50</span>

Leucine-rich repeat-containing protein 50 is a protein that in humans is encoded by the LRRC50 gene.

<span class="mw-page-title-main">Leucine rich repeat containing 15</span>

Leucine rich repeat containing 15 is a cell membrane expressed protein that in humans is encoded by the LRRC15 gene. There is preliminary evidence that expression may be related to the severity of COVID-19 and that it is an inhibitory accessory factor for SARS-CoV-2 entry to cells.

<span class="mw-page-title-main">LRRC24</span> Protein-coding gene in the species Homo sapiens

Leucine rich repeat containing 24 is a protein that, in humans, is encoded by the LRRC24 gene. The protein is represented by the official symbol LRRC24, and is alternatively known as LRRC14OS. The function of LRRC24 is currently unknown. It is a member of the leucine-rich repeat (LRR) superfamily of proteins.

<span class="mw-page-title-main">Volume-regulated anion channel</span>

Volume-regulated anion channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to. Some research has also suggested that VRACs may be water-permeable as well.

Leucine-rich repeat-containing protein 8B is a protein that in humans is encoded by the LRRC8B gene. Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8A, LRRC8C, LRRC8D, and LRRC8E, is sometimes a subunit of the heteromer protein volume-regulated anion channel (VRAC). VRACs are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to.

<span class="mw-page-title-main">LRRC8C</span>

Leucine-rich repeat-containing protein 8C is a protein that in humans is encoded by the LRRC8C gene. Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8A, LRRC8B, LRRC8D, and LRRC8E, is sometimes a subunit of the heteromer protein Volume-Regulated Anion Channel. Volume-Regulated Anion Channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to.

<span class="mw-page-title-main">LRRC26</span> Protein-coding gene in the species Homo sapiens

Leucine rich repeat containing 26 (LRRC26) is a protein that in humans is encoded by the LRRC26 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000171017 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000046589 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: LRRC8A leucine rich repeat containing 8 family, member A".
  6. Voss FK, Ullrich F, Münch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (May 2014). "Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC" (PDF). Science. 344 (6184): 634–8. Bibcode:2014Sci...344..634V. doi:10.1126/science.1252826. PMID   24790029. S2CID   24709412.
  7. Jentsch TJ (May 2016). "VRACs and other ion channels and transporters in the regulation of cell volume and beyond". Nature Reviews Molecular Cell Biology. 17 (5): 293–307. doi:10.1038/nrm.2016.29. PMID   27033257. S2CID   40565653.
  8. Hyzinski-García MC, Rudkouskaya A, Mongin AA (November 2014). "LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes". The Journal of Physiology. 592 (22): 4855–62. doi:10.1113/jphysiol.2014.278887. PMC   4259531 . PMID   25172945.
  9. Yamada T, Wondergem R, Morrison R, Yin VP, Strange K (October 2016). "Leucine-rich repeat containing protein LRRC8A is essential for swelling-activated Cl- currents and embryonic development in zebrafish =" [[Change of inulin- and chloride-spaces during acute metabolic acidosis in the rat]]. Physiological Reports. 4 (19): 16–27. doi:10.14814/phy2.12940. PMC   5064130 . PMID   27688432.
  10. 1 2 Planells-Cases R, Lutter D, Guyader C, Gerhards NM, Ullrich F, Elger DA, Kucukosmanoglu A, Xu G, Voss FK, Reincke SM, Stauber T, Blomen VA, Vis DJ, Wessels LF, Brummelkamp TR, Borst P, Rottenberg S, Jentsch TJ (December 2015). "Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs". The EMBO Journal. 34 (24): 2993–3008. doi:10.15252/embj.201592409. PMC   4687416 . PMID   26530471.
  11. Okada T, Islam MR, Tsiferova NA, Okada Y, Sabirov RZ (March 2017). "Specific and essential but not sufficient roles of LRRC8A in the activity of volume-sensitive outwardly rectifying anion channel (VSOR)". Channels. 11 (2): 109–120. doi:10.1080/19336950.2016.1247133. PMC   5398601 . PMID   27764579.
  12. Lutter D, Ullrich F, Lueck JC, Kempa S, Jentsch TJ (March 2017). "Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels". Journal of Cell Science. 130 (6): 1122–1133. doi: 10.1242/jcs.196253 . PMID   28193731.
  13. Sawada A, Takihara Y, Kim JY, Matsuda-Hashii Y, Tokimasa S, Fujisaki H, Kubota K, Endo H, Onodera T, Ohta H, Ozono K, Hara J (December 2003). "A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans". The Journal of Clinical Investigation. 112 (11): 1707–13. doi:10.1172/JCI18937. PMC   281644 . PMID   14660746.
  14. Gregersen NO, Buttenschøn HN, Hedemand A, Nielsen MN, Dahl HA, Kristensen AS, Johansen O, Woldbye DP, Erhardt A, Kruse TA, Wang AG, Børglum AD, Mors O (December 2016). "Association between genes on chromosome 19p13.2 and panic disorder". Psychiatric Genetics. 26 (6): 287–292. doi:10.1097/YPG.0000000000000147. PMID   27610895. S2CID   24158676.

Further reading