LZTR1

Last updated
LZTR1
Identifiers
Aliases LZTR1 , BTBD29, LZTR-1, SWNTS2, NS10, leucine-zipper-like transcription regulator 1, leucine zipper like transcription regulator 1, NS2
External IDs OMIM: 600574 MGI: 1914113 HomoloGene: 4925 GeneCards: LZTR1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006767

NM_025808
NM_001331226
NM_001331227

RefSeq (protein)

NP_006758

NP_001318155
NP_001318156
NP_080084

Location (UCSC) Chr 22: 20.98 – 21 Mb Chr 16: 17.33 – 17.34 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse
Leucine Zipper Transcription Regulator Protein Structure Leucine zipper.png
Leucine Zipper Transcription Regulator Protein Structure

Leucine-zipper-like transcriptional regulator 1 is a protein that in humans is encoded by the LZTR1 gene. [5] [6] [7]

Contents

The LZTR1 gene provides instructions for making a protein among the class of the superfamily broad complex, tamtrack & brick-a-bac / poxvirus and zinc finger (BTB/POZ). The superfamily of proteins has a wide range of functions including chromatin condensation during conformation of the cell cycle.  Other names associated with the LZTR gene are: BTBD29, LZTR-1, NS10, NS2, SWNTS2. This gene encodes a member of the BTB-kelch superfamily. Initially described as a putative transcriptional regulator based on weak homology to members of the basic leucine zipper-like family, the encoded protein subsequently has been shown to localize exclusively to the Golgi network where it may help stabilize the Golgi complex. [7]

Function

Based on its role in several tumor types, the LZTR1 protein is thought to act as a tumor suppressor. Tumor suppressors are proteins that keep cells from growing and dividing too rapidly or in an uncontrolled way. The LZTR1 is a non-specific protein that is found in all cells inside the body.  It is believed to be a transcriptional regulator that is typically degraded on apoptotic cells. The protein will be phosphorylated at its tyrosine receptors that will target it for degradation. Intracellularly, LZTR proteins will be found in the Golgi apparatus. Studies suggest that the LZTR1 protein may help stabilize this structure. LTZR1 protein could possibly be associated with the CUL3 ubiquitin ligase (Cullin-Based Ubiquitin Ligase 3) complex that helps function to destroy unneeded proteins in the cell. It has also been observed that LZTR protein will inhibit Ras signaling in the membrane by reducing the affinity of Ras to the membrane. Ras belongs to the family of GTPases that are involved in transcription regulation and activation of Raf enzymes. Raf molecules will cascade phosphorylate other molecules in the body to have a wide impact on a cell.  Studies using immunoprecipitation of endogenous LZTR1 followed by Western blotting were used to find the function of the LZTR gene. By trapping LZTR1 complexes from intact mammalian cells, Steklov et al. (2018) identified the guanosine triphosphatase RAS as a substrate for the LZTR1-CUL3 complex. [8]

Gene

The LZTR 1 gene is located on Chromosome 22: more specifically on the long arm at 22q11.21. The gene is approximately 16,768 base pairs long.

Mutations

Studies have found that mutations in the LZTR1 gene were found in malignant cancerous cells in the tumors of patients with glioblastoma. These mutations were found to be somatic, typically caused by environmental factors, and the loss of the LZTR1 gene are seen in the cells that are divided uncontrollably.

DiGeorge Syndrome

DiGeorge syndrome [7] (known as 22q11.2 deletion) caused by a deletion in the 22nd chromosome. Some of the typical symptoms associated with DiGeorge Syndrome are specific facial structure, congenital heart disease, and developmental delays. The implications of LTZR1 mutations were first diagnosed in DiGeorge patients. Studies have showed that deletion or mutation of the LZTR1 are identified in most patients that have been diagnosed with DiGeorge syndrome. The transcriptional regulation capabilities of the LZTR1 gene may play an important role in embryogenesis and is observed in several fetal organs. [9]

Noonan syndrome

Noonan syndrome is an autosomal dominant multisystem disorder characterized by a wide phenotypic spectrum including distinctive facial dysmorphism, postnatal growth retardation, short stature, ectodermal and skeletal defects, congenital heart anomalies, renal anomalies, lymphatic malformations, bleeding difficulties and variable cognitive deficits.

Studies have shown that in 29 genes there were 163 variants in patients with Noonan Syndrome. In the study, using In Silco software, the heterozygous missense mutation of the LZTR1 gene at exon 4 was the most pathogenic. [10] This missense mutation will lead to a substitution of an alanine to valine in the primary structure of amino acid for the LZTR protein.

Schwannomatosis

In patients with schwannomatosis, more than fifty different mutations in the LZTR1 gene are observed. [11] These mutations themselves are not sufficient to cause the disorder, but are typically associated with it. The somatic changes from environmental factors are also seen in patients with schwannomatosis. When the gene is altered, the LTZR protein cannot function properly to regulate the cell cycle by controlling the growth division. This unregulated growth will lead to cancerous growth along the Schwann cells.

Related Research Articles

<span class="mw-page-title-main">Autoimmune regulator</span> Immune system protein

The autoimmune regulator (AIRE) is a protein that in humans is encoded by the AIRE gene. It is a 13kb gene on chromosome 21q22.3 that has 545 amino acids. AIRE is a transcription factor expressed in the medulla of the thymus. It is part of the mechanism which eliminates self-reactive T cells that would cause autoimmune disease. It exposes T cells to normal, healthy proteins from all parts of the body, and T cells that react to those proteins are destroyed.

<span class="mw-page-title-main">KRAS</span> Protein-coding gene in humans

KRAS is a gene that provides instructions for making a protein called K-Ras, a part of the RAS/MAPK pathway. The protein relays signals from outside the cell to the cell's nucleus. These signals instruct the cell to grow and divide (proliferate) or to mature and take on specialized functions (differentiate). It is called KRAS because it was first identified as a viral oncogene in the KirstenRAt Sarcoma virus. The oncogene identified was derived from a cellular genome, so KRAS, when found in a cellular genome, is called a proto-oncogene.

<span class="mw-page-title-main">Jun dimerization protein</span> Protein-coding gene in the species Homo sapiens

Jun dimerization protein 2 (JUNDM2) is a protein that in humans is encoded by the JDP2 gene. The Jun dimerization protein is a member of the AP-1 family of transcription factors.

<span class="mw-page-title-main">TP63</span> Protein-coding gene in the species Homo sapiens

Tumor protein p63, typically referred to as p63, also known as transformation-related protein 63 is a protein that in humans is encoded by the TP63 gene.

<span class="mw-page-title-main">RAB7A</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rab-7a is a protein that in humans is encoded by the RAB7A gene.

<span class="mw-page-title-main">CEBPA</span> Protein-coding gene in the species Homo sapiens

CCAAT/enhancer-binding protein alpha is a protein encoded by the CEBPA gene in humans. CCAAT/enhancer-binding protein alpha is a transcription factor involved in the differentiation of certain blood cells. For details on the CCAAT structural motif in gene enhancers and on CCAAT/Enhancer Binding Proteins see the specific page.

<span class="mw-page-title-main">KEAP1</span> Protein-coding gene in the species Homo sapiens

Kelch-like ECH-associated protein 1 is a protein that in humans is encoded by the Keap1 gene.

<span class="mw-page-title-main">BACH1</span> Protein-coding gene in the species Homo sapiens

Transcription regulator protein BACH1 is a protein that in humans is encoded by the BACH1 gene.

<i>NRL</i> (gene) Protein-coding gene in the species Homo sapiens

Neural retina-specific leucine zipper protein is a protein that in humans is encoded by the NRL gene.

<span class="mw-page-title-main">TSC22D1</span> Protein-coding gene in the species Homo sapiens

TSC22 domain family protein 1 is a protein that in humans is encoded by the TSC22D1 gene.

<span class="mw-page-title-main">BACH2</span> Protein-coding gene in the species Homo sapiens

Transcription regulator protein BACH2 is a protein that in humans is encoded by the BACH2 gene. It contains a BTB/POZ domain at its N-terminus which forms a disulphide-linked dimer and a bZip_Maf domain at the C-terminus.

<span class="mw-page-title-main">BCL2L14</span> Protein-coding gene in humans

Apoptosis facilitator Bcl-2-like protein 14 is a protein that in humans is encoded by the BCL2L14 gene.

<span class="mw-page-title-main">BLZF1</span> Protein-coding gene in the species Homo sapiens

Golgin-45 is a protein that in humans is encoded by the BLZF1 gene.

<i>BATF</i> (gene) Protein-coding gene in the species Homo sapiens

Basic leucine zipper transcription factor, ATF-like, also known as BATF, is a protein which in humans is encoded by the BATF gene.

<span class="mw-page-title-main">KMT2D</span> Protein-coding gene in humans

Histone-lysine N-methyltransferase 2D (KMT2D), also known as MLL4 and sometimes MLL2 in humans and Mll4 in mice, is a major mammalian histone H3 lysine 4 (H3K4) mono-methyltransferase. It is part of a family of six Set1-like H3K4 methyltransferases that also contains KMT2A, KMT2B, KMT2C, KMT2F, and KMT2G.

<span class="mw-page-title-main">DOP1B</span> Protein-coding gene in the species Homo sapiens

DOP1B is a human gene located just above the Down Syndrome chromosomal region (DSCR) located at 21p22.2 sub-band. Although the exact function of this gene is not yet fully understood, it has been proven to play a role in multiple biological processes, and its over-expression (triplication) has been linked to multiple facets of the Down Syndrome phenotype, most notably mental retardation.

<span class="mw-page-title-main">RIT1</span> Protein-coding gene in the species Homo sapiens

GTP-binding protein Rit1 is a protein that in humans is encoded by the RIT1 gene.

<span class="mw-page-title-main">RAB33B</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rab-33B is a protein that in humans is encoded by the RAB33B gene.

<span class="mw-page-title-main">LZTFL1</span> Protein-coding gene in the species Homo sapiens

Leucine zipper transcription factor like 1 also known as LZTFL1 is a ubiquitously expressed protein which localizes to the cytoplasm and in humans is encoded by the LZTFL1 gene.

<span class="mw-page-title-main">CCDC188</span> Protein found in humans

CCDC188 or coiled-coil domain containing protein is a protein that in humans is encoded by the CCDC188 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000099949 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022761 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kurahashi H, Akagi K, Inazawa J, Ohta T, Niikawa N, Kayatani F, Sano T, Okada S, Nishisho I (Sep 1995). "Isolation and characterization of a novel gene deleted in DiGeorge syndrome". Hum Mol Genet. 4 (4): 541–9. doi:10.1093/hmg/4.4.541. PMID   7633402.
  6. Nacak TG, Leptien K, Fellner D, Augustin HG, Kroll J (Feb 2006). "The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis". J Biol Chem. 281 (8): 5065–71. doi: 10.1074/jbc.M509073200 . PMID   16356934.
  7. 1 2 3 "Entrez Gene: LZTR1 leucine-zipper-like transcription regulator 1".
  8. "OMIM Entry - * 600574 - LEUCINE ZIPPER-LIKE TRANSCRIPTIONAL REGULATOR 1; LZTR1". www.omim.org. Retrieved 2019-04-18.
  9. Kurahashi, H.; Akagi, K.; Inazawa, J.; Ohta, T.; Niikawa, N.; Kayatani, F.; Sano, T.; Okada, S.; Nishisho, I. (April 1995). "Isolation and characterization of a novel gene deleted in DiGeorge syndrome". Human Molecular Genetics. 4 (4): 541–549. doi:10.1093/hmg/4.4.541. ISSN   0964-6906. PMID   7633402.
  10. Reference, Genetics Home. "Noonan syndrome". Genetics Home Reference. Retrieved 2019-04-18.
  11. Piotrowski A, Xie J, Liu YF, Poplawski AB, Gomes AR, Madanecki P, Fu C, Crowley MR, Crossman DK, Armstrong L, Babovic-Vuksanovic D, Bergner A, Blakeley JO, Blumenthal AL, Daniels MS, Feit H, Gardner K, Hurst S, Kobelka C, Lee C, Nagy R, Rauen KA, Slopis JM, Suwannarat P, Westman JA, Zanko A, Korf BR, Messiaen LM (Dec 2013). "Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas". Nat Genet. 46 (2): 182–7. doi:10.1038/ng.2855. PMC   4352302 . PMID   24362817.

Further reading