La domain

Last updated
La domain
PDB 2cqk EBI.jpg
solution structure of the la domain of c-mpl binding protein
Identifiers
SymbolLa
Pfam PF05383
InterPro IPR006630
SMART TSPN
PROSITE PDOC00280
MEROPS I75
SCOP2 2mpr / SCOPe / SUPFAM
TCDB 1.B.3
CDD cd07323
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, the La domain is a conserved protein domain. Human 60 kDa SS-A/Ro ribonucleoproteins (RNPs) are composed of one of the four small Y RNAs and at least two proteins, Ro60 and La. The La protein is a 47 kDa polypeptide that frequently acts as an autoantigen in systemic lupus erythematosus and Sjögren syndrome. [1] In the nucleus, La acts as a RNA polymerase III (RNAP III) transcription factor, while in the cytoplasm, La acts as a translation factor. [2] In the nucleus, La binds to the 3'UTR of nascent RNAP III transcripts to assist in folding and maturation. [3] In the cytoplasm, La recognises specific classes of mRNAs that contain a 5'-terminal oligopyrimidine (5'TOP) motif known to control protein synthesis. [4] The specific recognition is mediated by the N-terminal domain of La, which comprises a La motif and an RNA recognition motif (RRM). The La motif adopts an alpha/beta fold that comprises a winged-helix motif. [5]

Homologous La domain-containing proteins have been identified in a wide range of organisms except Archaea, bacteria and viruses. [6]

Related Research Articles

<span class="mw-page-title-main">SR protein</span>

SR proteins are a conserved family of proteins involved in RNA splicing. SR proteins are named because they contain a protein domain with long repeats of serine and arginine amino acid residues, whose standard abbreviations are "S" and "R" respectively. SR proteins are ~200-600 amino acids in length and composed of two domains, the RNA recognition motif (RRM) region and the RS domain. SR proteins are more commonly found in the nucleus than the cytoplasm, but several SR proteins are known to shuttle between the nucleus and the cytoplasm.

RNA-binding proteins are proteins that bind to the double or single stranded RNA in cells and participate in forming ribonucleoprotein complexes. RBPs contain various structural motifs, such as RNA recognition motif (RRM), dsRNA binding domain, zinc finger and others. They are cytoplasmic and nuclear proteins. However, since most mature RNA is exported from the nucleus relatively quickly, most RBPs in the nucleus exist as complexes of protein and pre-mRNA called heterogeneous ribonucleoprotein particles (hnRNPs). RBPs have crucial roles in various cellular processes such as: cellular function, transport and localization. They especially play a major role in post-transcriptional control of RNAs, such as: splicing, polyadenylation, mRNA stabilization, mRNA localization and translation. Eukaryotic cells express diverse RBPs with unique RNA-binding activity and protein–protein interaction. According to the Eukaryotic RBP Database (EuRBPDB), there are 2961 genes encoding RBPs in humans. During evolution, the diversity of RBPs greatly increased with the increase in the number of introns. Diversity enabled eukaryotic cells to utilize RNA exons in various arrangements, giving rise to a unique RNP (ribonucleoprotein) for each RNA. Although RBPs have a crucial role in post-transcriptional regulation in gene expression, relatively few RBPs have been studied systematically.It has now become clear that RNA–RBP interactions play important roles in many biological processes among organisms.

<span class="mw-page-title-main">U4 spliceosomal RNA</span> Non-coding RNA component of the spliceosome

The U4 small nuclear Ribo-Nucleic Acid is a non-coding RNA component of the major or U2-dependent spliceosome – a eukaryotic molecular machine involved in the splicing of pre-messenger RNA (pre-mRNA). It forms a duplex with U6, and with each splicing round, it is displaced from the U6 snRNA in an ATP-dependent manner, allowing U6 to re-fold and create the active site for splicing catalysis. A recycling process involving protein Brr2 releases U4 from U6, while protein Prp24 re-anneals U4 and U6. The crystal structure of a 5′ stem-loop of U4 in complex with a binding protein has been solved.

<span class="mw-page-title-main">HNRNPA1</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein A1 is a protein that in humans is encoded by the HNRNPA1 gene. Mutations in hnRNP A1 are causative of amyotrophic lateral sclerosis and the syndrome multisystem proteinopathy.

<span class="mw-page-title-main">RBM8A</span> Protein-coding gene in the species Homo sapiens

RNA-binding protein 8A is a protein that in humans is encoded by the RBM8A gene.

<span class="mw-page-title-main">PCBP2</span> Protein-coding gene in the species Homo sapiens

Poly(rC)-binding protein 2 is a protein that in humans is encoded by the PCBP2 gene.

<span class="mw-page-title-main">DEAD box</span> Family of proteins

DEAD box proteins are involved in an assortment of metabolic processes that typically involve RNAs, but in some cases also other nucleic acids. They are highly conserved in nine motifs and can be found in most prokaryotes and eukaryotes, but not all. Many organisms, including humans, contain DEAD-box (SF2) helicases, which are involved in RNA metabolism.

<span class="mw-page-title-main">Sjögren syndrome antigen B</span> Protein

Sjögren syndrome type B antigen (SS-B) also known as Lupus La protein is a protein that in humans is encoded by the SSB gene.

<span class="mw-page-title-main">HNRPD</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) also known as AU-rich element RNA-binding protein 1 (AUF1) is a protein that in humans is encoded by the HNRNPD gene. Alternative splicing of this gene results in four transcript variants.

<span class="mw-page-title-main">SF3A1</span> Protein-coding gene in the species Homo sapiens

Splicing factor 3 subunit 1 is a protein that in humans is encoded by the SF3A1 gene.

<span class="mw-page-title-main">HNRPF</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein F is a protein that in humans is encoded by the HNRNPF gene.

<span class="mw-page-title-main">HNRPH1</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein H is a protein that in humans is encoded by the HNRNPH1 gene.

<span class="mw-page-title-main">HNRNPL</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein L is a protein that in humans is encoded by the HNRNPL gene.

<span class="mw-page-title-main">UPF3B</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 3B is a protein that in humans is encoded by the UPF3B gene.

<span class="mw-page-title-main">HNRPDL</span> Mammalian protein found in Homo sapiens

Heterogeneous nuclear ribonucleoprotein D-like, also known as HNRPDL, is a protein which in humans is encoded by the HNRPDL gene.

<span class="mw-page-title-main">IGF2BP2</span> Protein-coding gene in the species Homo sapiens

Insulin-like growth factor 2 mRNA-binding protein 2 is a protein that in humans is encoded by the IGF2BP2 gene.

<span class="mw-page-title-main">PTBP1</span> Protein-coding gene in the species Homo sapiens

Polypyrimidine tract-binding protein 1 is a protein that in humans is encoded by the PTBP1 gene.

<span class="mw-page-title-main">Exon junction complex</span> Protein complex assembled on mRNA

An exon junction complex (EJC) is a protein complex which forms on a pre-messenger RNA strand at the junction of two exons which have been joined together during RNA splicing. The EJC has major influences on translation, surveillance, localization of the spliced mRNA, and m6A methylation. It is first deposited onto mRNA during splicing and is then transported into the cytoplasm. There it plays a major role in post-transcriptional regulation of mRNA. It is believed that exon junction complexes provide a position-specific memory of the splicing event. The EJC consists of a stable heterotetramer core, which serves as a binding platform for other factors necessary for the mRNA pathway. The core of the EJC contains the protein eukaryotic initiation factor 4A-III bound to an adenosine triphosphate (ATP) analog, as well as the additional proteins Magoh and Y14. The binding of these proteins to nuclear speckled domains has been measured recently and it may be regulated by PI3K/AKT/mTOR signaling pathways. In order for the binding of the complex to the mRNA to occur, the eIF4AIII factor is inhibited, stopping the hydrolysis of ATP. This recognizes EJC as an ATP dependent complex. EJC also interacts with a large number of additional proteins; most notably SR proteins. These interactions are suggested to be important for mRNA compaction. The role of EJC in mRNA export is controversial.

<span class="mw-page-title-main">RNA recognition motif</span>

RNA recognition motif, RNP-1 is a putative RNA-binding domain of about 90 amino acids that are known to bind single-stranded RNAs. It was found in many eukaryotic proteins.

The RNA-binding Proteins Database (RBPDB) is a biological database of RNA-binding protein specificities that includes experimental observations of RNA-binding sites. The experimental results included are both in vitro and in vivo from primary literature. It includes four metazoan species, which are Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans. RNA-binding domains included in this database are RNA recognition motif, K homology, CCCH zinc finger, and more domains. As of 2021, the latest RBPDB release includes 1,171 RNA-binding proteins.

References

  1. Izumi RE, Das S, Barat B, Raychaudhuri S, Dasgupta A (April 2004). "A peptide from autoantigen La blocks poliovirus and hepatitis C virus cap-independent translation and reveals a single tyrosine critical for La RNA binding and translation stimulation". J. Virol. 78 (7): 3763–76. doi:10.1128/jvi.78.7.3763-3776.2004. PMC   371053 . PMID   15016896.
  2. Intine RV, Tenenbaum SA, Sakulich AL, Keene JD, Maraia RJ (November 2003). "Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs". Mol. Cell. 12 (5): 1301–7. doi: 10.1016/S1097-2765(03)00429-5 . PMID   14636586.
  3. Alfano C, Sanfelice D, Babon J, Kelly G, Jacks A, Curry S, Conte MR (April 2004). "Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein". Nat. Struct. Mol. Biol. 11 (4): 323–9. doi:10.1038/nsmb747. PMID   15004549. S2CID   24034320.
  4. Keene JD (December 2003). "Posttranscriptional generation of macromolecular complexes". Mol. Cell. 12 (6): 1347–9. doi: 10.1016/S1097-2765(03)00496-9 . PMID   14690589.
  5. Kenan DJ, Keene JD (April 2004). "La gets its wings". Nat. Struct. Mol. Biol. 11 (4): 303–5. doi:10.1038/nsmb0404-303. PMID   15048103. S2CID   8623162.
  6. Lin-Marq N, Clarkson SG (January 1995). "A yeast RNA binding protein that resembles the human autoantigen La". J. Mol. Biol. 245 (2): 81–5. doi:10.1006/jmbi.1994.0008. PMID   7799435.
This article incorporates text from the public domain Pfam and InterPro: IPR006630