Lactate dehydrogenase A

Last updated
LDHA
Protein LDHA PDB 1i10.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases LDHA , GSD11, HEL-S-133P, LDH1, LDHM, PIG19, lactate dehydrogenase A
External IDs OMIM: 150000 MGI: 96759 HomoloGene: 56495 GeneCards: LDHA
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001135239
NM_001165414
NM_001165415
NM_001165416
NM_005566

NM_001136069
NM_010699

RefSeq (protein)

NP_001128711
NP_001158886
NP_001158887
NP_001158888
NP_005557

NP_001129541
NP_034829

Location (UCSC) Chr 11: 18.39 – 18.41 Mb Chr 7: 46.49 – 46.51 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Lactate dehydrogenase A (LDHA) is an enzyme which in humans is encoded by the LDHA gene. [5] It is a monomer of Lactate dehydrogenase, which exists as a tetramer. The other main subunit is lactate dehydrogenase B (LDHB).

Function

Lactate dehydrogenase A catalyzes the inter-conversion of pyruvate and L-lactate with concomitant inter-conversion of NADH and NAD+. LDHA is found in most somatic tissues, though predominantly in muscle tissue and tumors, and belongs to the lactate dehydrogenase family. It has long been known that many human cancers have higher LDHA levels compared to normal tissues. It has also been shown that LDHA plays an important role in the development, invasion and metastasis of malignancies. Mutations in LDHA have been linked to exertional myoglobinuria. [6]

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
WP534.png go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
WP534.png go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Glycolysis and Gluconeogenesis edit]]
Glycolysis and Gluconeogenesis edit
  1. The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534".

Model organisms

Model organisms have been used in the study of LDHA function. A conditional knockout mouse line, called Ldhatm1a(EUCOMM)Wtsi [14] [15] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists. [16] [17] [18]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [12] [19] Twenty seven tests were carried out on mutant mice and five significant abnormalities were observed. [12] Few homozygous mutant embryos were identified during gestation, and none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice. Animals of both sex had abnormal plasma chemistry, males also had improved glucose tolerance and increased red blood cell distribution width. [12]

LDHA Inhibitors

The following compounds have been demonstrated to inhibit the LDHA enzyme:

Related Research Articles

<span class="mw-page-title-main">Dihydroorotate dehydrogenase</span> Class of enzymes

Dihydroorotate dehydrogenase (DHODH) is an enzyme that in humans is encoded by the DHODH gene on chromosome 16. The protein encoded by this gene catalyzes the fourth enzymatic step, the ubiquinone-mediated oxidation of dihydroorotate to orotate, in de novo pyrimidine biosynthesis. This protein is a mitochondrial protein located on the outer surface of the inner mitochondrial membrane (IMM). Inhibitors of this enzyme are used to treat autoimmune diseases such as rheumatoid arthritis.

<span class="mw-page-title-main">CHD7</span> Protein-coding gene in the species Homo sapiens

Chromodomain-helicase-DNA-binding protein 7 also known as ATP-dependent helicase CHD7 is an enzyme that in humans is encoded by the CHD7 gene.

<span class="mw-page-title-main">Sodium/glucose cotransporter 2</span> Protein-coding gene in the species Homo sapiens

The sodium/glucose cotransporter 2 (SGLT2) is a protein that in humans is encoded by the SLC5A2 gene.

<span class="mw-page-title-main">Lactate dehydrogenase</span> Class of enzymes

Lactate dehydrogenase (LDH or LD) is an enzyme found in nearly all living cells. LDH catalyzes the conversion of pyruvate to lactate and back, as it converts NAD+ to NADH and back. A dehydrogenase is an enzyme that transfers a hydride from one molecule to another.

<span class="mw-page-title-main">GCLC</span> Protein-coding gene in the species Homo sapiens

Glutamate—cysteine ligase catalytic subunit is an enzyme that in humans is encoded by the GCLC gene.

<span class="mw-page-title-main">SETDB1</span> Enzyme-coding gene in humans

Histone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded by the SETDB1 gene. SETDB1 is also known as KMT1E or H3K9 methyltransferase ESET.

<span class="mw-page-title-main">NDUFS3</span> Protein-coding gene in the species Homo sapiens

NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial is an enzyme that in humans is encoded by the NDUFS3 gene on chromosome 11. This gene encodes one of the iron-sulfur protein (IP) components of mitochondrial NADH:ubiquinone oxidoreductase. Mutations in this gene are associated with Leigh syndrome resulting from mitochondrial complex I deficiency.

<span class="mw-page-title-main">BACH2</span> Protein-coding gene in the species Homo sapiens

Transcription regulator protein BACH2 is a protein that in humans is encoded by the BACH2 gene. It contains a BTB/POZ domain at its N-terminus which forms a disulphide-linked dimer and a bZip_Maf domain at the C-terminus.

<span class="mw-page-title-main">ARID4A</span> Protein-coding gene in humans

AT rich interactive domain 4A (RBP1-like), also known as ARID4A, is a protein which in humans is encoded by the ARID4A gene.

<span class="mw-page-title-main">LRIG1</span> Protein-coding gene in the species Homo sapiens

Leucine-rich repeats and immunoglobulin-like domains protein 1 is a protein that in humans is encoded by the LRIG1 gene. It encodes a transmembrane protein that has been shown to interact with receptor tyrosine kinases of the EGFR family and with MET and RET.

<span class="mw-page-title-main">SMYD3</span> Protein-coding gene in the species Homo sapiens

SET and MYND (myeloid-Nervy-DEAF-1) domain-containing protein 3 is a protein that in humans is encoded by the SMYD3 gene.

<span class="mw-page-title-main">SMS (gene)</span> Protein-coding gene in the species Homo sapiens

Spermine synthase is an enzyme that in humans is encoded by the SMS gene. The protein encoded by this gene belongs to the spermidine/spermine synthases family. This gene encodes a ubiquitous enzyme of polyamine metabolism.

<span class="mw-page-title-main">KDM4C</span> Protein-coding gene in the species Homo sapiens

Lysine-specific demethylase 4C is an enzyme that in humans is encoded by the KDM4C gene.

<span class="mw-page-title-main">JARID2</span> Protein-coding gene in the species Homo sapiens

Protein Jumonji is a protein that in humans is encoded by the JARID2 gene. JARID2 is a member of the alpha-ketoglutarate-dependent hydroxylase superfamily.

<span class="mw-page-title-main">ATPAF2</span> Protein-coding gene in the species Homo sapiens

ATP synthase mitochondrial F1 complex assembly factor 2 is an enzyme that in humans is encoded by the ATPAF2 gene.

<span class="mw-page-title-main">ALDH3B1</span> Protein-coding gene in the species Homo sapiens

Aldehyde dehydrogenase 3 family, member B1 also known as ALDH3B1 is an enzyme that in humans is encoded by the ALDH3B1 gene.

<span class="mw-page-title-main">COQ9</span> Protein-coding gene in the species Homo sapiens

Ubiquinone biosynthesis protein COQ9, mitochondrial, also known as coenzyme Q9 homolog (COQ9), is a protein that in humans is encoded by the COQ9 gene.

<span class="mw-page-title-main">CRLF3</span> Protein-coding gene in the species Homo sapiens

Cytokine receptor-like factor 3 is a protein that in humans is encoded by the CRLF3 gene.

Retinol dehydrogenase 16 (all-trans) is a protein that in humans is encoded by the RDH16 gene. The gene is also known as RODH-4 and SDR9C8.

<span class="mw-page-title-main">CBX7 (gene)</span> Protein-coding gene in the species Homo sapiens

Chromobox homolog 7 is a protein that in humans is encoded by the CBX7 gene. The loss of CBX7 gene expression has been shown to correlate with a malignant form of thyroid cancer.

References

  1. 1 2 3 ENSG00000288299 GRCh38: Ensembl release 89: ENSG00000134333, ENSG00000288299 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000063229 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Chung FZ, Tsujibo H, Bhattacharyya U, Sharief FS, Li SS (November 1985). "Genomic organization of human lactate dehydrogenase-A gene". Biochemical Journal. 231 (3): 537–41. doi:10.1042/bj2310537. PMC   1152784 . PMID   3000353.
  6. "Entrez Gene: LDHA lactate dehydrogenase A".
  7. "Glucose tolerance test data for Ldha". Wellcome Trust Sanger Institute.
  8. "Clinical chemistry data for Ldha". Wellcome Trust Sanger Institute.
  9. "Haematology data for Ldha". Wellcome Trust Sanger Institute.
  10. "Salmonella infection data for Ldha". Wellcome Trust Sanger Institute.
  11. "Citrobacter infection data for Ldha". Wellcome Trust Sanger Institute.
  12. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  13. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  14. "International Knockout Mouse Consortium".
  15. "Mouse Genome Informatics".
  16. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  17. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi: 10.1038/474262a . PMID   21677718.
  18. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  19. van der Weyden L, White JK, Adams DJ, Logan DW (June 2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC   3218837 . PMID   21722353.
  20. Miskimins WK, Ahn HJ, Kim JY, Ryu S, Jung YS, Choi JY (2014). "Synergistic anti-cancer effect of phenformin and oxamate". PLOS ONE. 9 (1): e85576. Bibcode:2014PLoSO...985576M. doi: 10.1371/journal.pone.0085576 . PMC   3897486 . PMID   24465604.
  21. Lu QY, Zhang L, Yee JK, Go VW, Lee WN (February 2015). "Metabolic Consequences of LDHA inhibition by Epigallocatechin Gallate and Oxamate in MIA PaCa-2 Pancreatic Cancer Cells". Metabolomics. 11 (1): 71–80. doi:10.1007/s11306-014-0672-8. PMC   4523095 . PMID   26246802.
  22. Billiard J, Dennison JB, Briand J, Annan RS, Chai D, Colón M, Dodson CS, Gilbert SA, Greshock J, Jing J, Lu H, McSurdy-Freed JE, Orband-Miller LA, Mills GB, Quinn CJ, Schneck JL, Scott GF, Shaw AN, Waitt GM, Wooster RF, Duffy KJ (September 2013). "Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells". Cancer & Metabolism. 1 (1): 19. doi:10.1186/2049-3002-1-19. PMC   4178217 . PMID   24280423.

Further reading