Landscape conservation cooperatives

Last updated

The Landscape Conservation Cooperatives (LCC), established in 2009 in the United States, are a network of 22 regional conservation bodies covering the entire United States and adjacent areas. They are autonomous cooperatives sponsored by the U.S. Department of the Interior and aim to develop coordinated conservation strategies applicable to large areas of land. Partnerships are formed with government and non-government conservation organizations to achieve common goals of conservation. [1] [2] While fairly new as government supported entities, the LCCs are similar to initiatives that have been started or advocated in other countries.

Contents

Description

In response to rapid changes in large land and marine landscapes, uncertain environmental and social changes, conservation organizations need to overcome barriers to cooperation. These conservation organizations need to build governance structures, combine ecological, biological and physical sciences with social science insights, and the incorporation of new information to become capable of achieving the combined LCC goals. In some cases, LCCs cross borders and differing goals need to be accommodated by multiple LCCs and other conservation entities. Governance of the LCCs has been a barrier to their successful implementation in the United States. It has been suggested that the Adaptive Common Governance Framework, a social network supported by differing conservation stakeholders will provide the platform for building relationships, enhancing stakeholder engagement, allowing the potential partnering entities to create a working environment of adaptive co-governance. As an example, Rural credit cooperatives are a network of government and non-government protection organizations that promote the protection of rapidly changing social ecosystems by providing the structure and incentives for collaboration and shared learning. [3]

Landscape Conservation The Queensland Plan.pdf
Landscape Conservation

Modern landscape planning and design coordinates the relationship between people and nature in the process of human development, social progress and natural evolution. Landscape planning research covers topics such as land development, land use, and environmental quality. Troll proposed the concept of "landscape ecology." The landscape was viewed as "the whole of the space and everything that the vision touches in the human living environment." Buchwald believes that the so-called landscape can be understood as a comprehensive feature of a certain space on the surface. Egler proposed the concept of total human ecosystem. Dansereau advocates the use of "human ecology" to study the impact of humans on the landscape. McHarg proposed to use the entire human ecosystem as a target for landscape ecology and landscape ecological planning. The process of landscape planning is to help people living in natural systems or using the resources in the system to find the most appropriate route (McHarg, 1969). It is a plan based on ecological theory and knowledge (Sedon, 1986, Leita and Ahern, 2002). [3]

Landscape ecology considers the lithosphere, biosphere and wisdom circle in the human living space as an integral part of the overall human ecosystem, and studies the structural and functional relationships between the various landscape elements (relatively homogeneous ecosystems). Landscape ecology is the guiding theory of landscape ecological design. The landscape ecological design with the information society as the background is the process of human beings to actively arrange and coordinate the elements of the overall landscape (including natural and cultural). All elements of the landscape as a design variable and goal, ultimately optimize the landscape system structure and function. Landscape planning provides a comprehensive solution through close collaboration with spatial planning. Landscape planning has gradually expanded to the areas of river basin planning, regional planning, land planning, and ecological remediation and restoration. The objects directly faced by landscape planning have been extended to the land complex. [4]

Landscape planning is a material spatial plan with the overall goal of achieving sustainable landscapes or ecosystems through land and natural resource conservation and use planning. Landscape ecological planning has the following basic principles: natural priority principle, overall design principle, design adaptability principle and multidisciplinary comprehensive principle. Beta Langfi pointed out that "it is not only to study parts and processes in isolation, but also to study the interaction of various parts. The organism should be considered as a whole or system. Environmental protection requires systematic thinking. Landscape planning is required for overall planning.

Implementation

Maintaining biodiversity by protecting a representative and well-connected habitat network in a managed landscape requires wisely protecting, managing, and restoring habitats on multiple scales. Scholars suggest that the integration of natural sciences and social sciences in the form of "two-dimensional gap analysis" is an effective tool for implementing biodiversity policies. The tool links biologically relevant "horizontal" ecological issues to "vertical" issues related to institutions and other social issues. Taking forest biodiversity as an example, it illustrates how to combine the ecological and institutional aspects of biodiversity conservation to promote environmentally sustainable regional development. In particular, people use regional gap analysis to identify local forest types and determine habitat modeling for "green infrastructure" functional connectivity as a tool for horizontal gap analysis. For the vertical dimension, it is suggested how to assess the success of social sciences in implementing biodiversity policies in real landscapes by identifying institutional barriers when implementing policies. It is believed that this interdisciplinary approach can be applied to a range of other environments, including other terrestrial biota and aquatic ecosystems, where functional habitat connectivity, non-linear response to habitat loss, and multiple economic and social benefits occur together in the same landscape. [5]

Landscape conservation partners at Konza Prairie Landscape conservation partners at Konza Prairie (19752031495).jpg
Landscape conservation partners at Konza Prairie

There is a clear need for policies and practices that integrate biodiversity issues into sectors outside the protected area, especially in view of the local authorities’ extensive decentralization of land use decisions. Therefore, people must develop systematic (target-driven) protection planning products that are both user-friendly and useful to users, and are applicable to local government officials, consultants, and elected decision makers. Through the systematic conservation planning assessment of subtropical jungle biomes in South Africa, implementation opportunities and constraints are considered from the outset to work with stakeholders to develop products (maps and guides) that can be used for local government land use planning. [5]

Assessing joint input with stakeholders, developed (i) Mega Conservancy Networks, a multi-ownership large conservation corridor for biodiversity processes; (ii) protection status categories for all biodiversity characteristics (extremely endangered), endangered, fragile, not currently vulnerable), achieving conservation goals based on existing habitats, and (iii) integrating (i) and (ii). The map was further explained to municipal decision makers through the corresponding land use guidelines for each type of conservation status. To raise awareness of the value of biodiversity and its services, a handbook was prepared, which also introduces new and upcoming environmental legislation. Within 18 months of producing these products, the evidence that maps and their guidelines are effectively integrated or mainstreamed into land-use planning is encouraging. However, there is still a need to increase efforts to raise awareness of the value of biodiversity and its services among many stakeholder groups. Despite this, the way people plan to implement by considering the needs and obligations of end users has produced positive results. Finally, suggestions for further improvements are proposed.

Influence

In 2010, Arctic LLC provided approximately $2 million in funding for climate-related research and data integration, and provided the same amount of support through in-kind contributions to the workforce and funding from other agencies and NGOs. One product of this initial cycle is the report "Integrating the Alaska Landscape into the Future." The project uses a climate envelope model approach to assess how future climate scenarios match the average temperature and precipitation conditions from 2000 to 2009. The results indicate that approximately 60% of Alaska may be transformed into a new climatic biome in the twenty-first century. .

In 2011, approximately $1.3 million in funding from the Arctic LCC and $1 million in leverage will support more than 20 different research and data integration projects. With the development of a long-term scientific plan, the ALCC Steering Committee makes a temporary selection of proposals based on responsiveness, feasibility, level of cooperation, response to management issues, and many other criteria for ALCC objectives. Currently, six technical working groups – permafrost, coastal processes, climate simulation, hydrology, Arctic biology and geospatial data – provide input for the development of the Arctic LCC Science Program, which will guide future project financing strategies. The draft plan will be published at the end of 2011. [6]

Landscape Conservation Cooperatives Influence Biologist speaking at the Friday morning Town Hall session, where attendees were welcome to discuss their ideas on how to further landscape conservation. (5471417121).jpg
Landscape Conservation Cooperatives Influence

As the area covered by natural ecosystems decreases, the protection of tropical biodiversity in agricultural landscapes becomes even more important. The Shadow Coffee Cooperative in El Salvador analyzed the impact of local livelihoods, types of cooperation and selected biophysical variables (altitude, slope, percent shade, forest distance, coffee density and coffee age) on tree biodiversity.

The tree stock of 51 samples from the coffee cooperative included 2,743 individuals from 46 families and 123 identified tree species. Some cooperatives have different species richness and diameter, and the greater the abundance, the greater the stem density; other biophysical variables have little effect on diversity. The amount of shadows in coffee plantations varies among cooperatives, especially during the rainy season. Among the species recently reported in a study of neighboring forests and cooperatives (N = 227 species), 16% were present in two locations. Three coffee plantations account for 35% of the total number of species reported by all cooperatives. [6]

Studies have shown that the number of tree species found in coffee plantations increases with the density of shady trees contained in the system. In turn, agro-ecological management influenced by farmers' livelihood strategies and types of cooperation directly affects the composition of the shady canopy. Important factors to consider are the type of farmer organization, the cost of maintaining protected species, and the potential benefits of protecting a livelihood strategy that may be for farmers.

Consequence

The field of system protection planning has matured to the extent that it can be effectively applied. Influenced by everything from computer science to conservation biology, it uses a quantitative geospatial approach to spatially prioritize conservation decisions (Ball et al. 2009). The basic feature is to protect ecosystems, species, and processes in the network that are related to environmental change and that can adapt to environmental changes (Anderson, 2014). The LCC system is very broad in space and is well suited to applied science to achieve these outcomes: (a) the layout of core protected areas, (b) creating network connectivity to address climate change, and (c) assessing land-use vulnerability changes, (d) combine social constraints with biodiversity and ecosystem services goals, and (e) compare options. [3]

Landscape Conservation Cooperatives Consequence Epa Strategic Plan Fiscal Year 2014 2018.pdf
Landscape Conservation Cooperatives Consequence

While system protection plans require a large data set on protection goals, the LCC structure helps capture this data, saving money when partners share data and expertise. LCC Science is conducted by conservation scientists from academic institutions, private companies and NGOs. As stakeholder engagement improves the science of systems protection planning, this collective "bottom-up" approach provides modelers with a source of expertise that is critical to establishing conservation goals, setting goals and reviewing results. . . Finally, the LCC structure is exactly the same as the dissemination results, because the collaborators form a channel back to their institutions, organizations, institutions and the public. Twenty-two low-cost lines are further connected to the National Network Coordinator and Small Employee Network. [3]

LCC has previously implemented multi-state and non-governmental organization wildlife conservation initiatives. However, these are difficult to maintain because there are no federally-managed cooperatives to fund and organize the required spatially clear data to help prioritize regional protection spending. When rural information centers focus on the entire landscape, species and ecosystems, ecological processes, human impacts and interests, and priorities for time and space actions, they often plan (if implemented) to protect the country's biodiversity.

Trump administration cuts

Around April 2019, the Trump administration reportedly withdrew LCC funding, against the instructions of Congress, causing 16 of the 22 LCCs to close or enter hiatus. [7] [ needs update ]

Related Research Articles

<span class="mw-page-title-main">Protected area</span> Areas protected for having ecological or cultural importance

Protected areas or conservation areas are locations which receive protection because of their recognized natural, ecological or cultural values. Protected areas are those areas in which human presence or the exploitation of natural resources is limited.

<span class="mw-page-title-main">Conservation biology</span> Study of threats to biological diversity

Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. It is an interdisciplinary subject drawing on natural and social sciences, and the practice of natural resource management.

<span class="mw-page-title-main">Urban ecology</span> Scientific study of living organisms

Urban ecology is the scientific study of the relation of living organisms with each other and their surroundings in an urban environment. An urban environment refers to environments dominated by high-density residential and commercial buildings, paved surfaces, and other urban-related factors that create a unique landscape. The goal of urban ecology is to achieve a balance between human culture and the natural environment.

<span class="mw-page-title-main">Habitat conservation</span> Management practice for protecting types of environments

Habitat conservation is a management practice that seeks to conserve, protect and restore habitats and prevent species extinction, fragmentation or reduction in range. It is a priority of many groups that cannot be easily characterized in terms of any one ideology.

<span class="mw-page-title-main">Environmental protection</span> Practice of protecting the natural environment

Environmental protection is the practice of protecting the natural environment by individuals, groups and governments. Its objectives are to conserve natural resources and the existing natural environment and, where it is possible, to repair damage and reverse trends.

<span class="mw-page-title-main">National Estuarine Research Reserve</span> Network of 30 protected areas in the US

The National Estuarine Research Reserve System is a network of 30 protected areas established by partnerships between the National Oceanic and Atmospheric Administration (NOAA) and coastal states. The reserves represent different biogeographic regions of the United States. The National Estuarine Research Reserve System protects more than 1.3 million acres of coastal and estuarine habitats for long-term research, water-quality monitoring, education, and coastal stewardship.

<span class="mw-page-title-main">Reconciliation ecology</span> Study of maintaining biodiversity in human-dominated ecosystems

Reconciliation ecology is the branch of ecology which studies ways to encourage biodiversity in the human-dominated ecosystems of the anthropocene era. Michael Rosenzweig first articulated the concept in his book Win-Win Ecology, based on the theory that there is not enough area for all of earth's biodiversity to be saved within designated nature preserves. Therefore, humans should increase biodiversity in human-dominated landscapes. By managing for biodiversity in ways that do not decrease human utility of the system, it is a "win-win" situation for both human use and native biodiversity. The science is based in the ecological foundation of human land-use trends and species-area relationships. It has many benefits beyond protection of biodiversity, and there are numerous examples of it around the globe. Aspects of reconciliation ecology can already be found in management legislation, but there are challenges in both public acceptance and ecological success of reconciliation attempts.

<span class="mw-page-title-main">Ecosystem service</span> Benefits provided by healthy nature, forests and environmental systems

Ecosystem services are the many and varied benefits to humans provided by the natural environment and healthy ecosystems. Such ecosystems include, for example, agroecosystems, forest ecosystem, grassland ecosystems, and aquatic ecosystems. These ecosystems, functioning in healthy relationships, offer such things as natural pollination of crops, clean air, extreme weather mitigation, and human mental and physical well-being. Collectively, these benefits are becoming known as ecosystem services, and are often integral to the provision of food, the provisioning of clean drinking water, the decomposition of wastes, and the resilience and productivity of food ecosystems.

The Mesoamerican Biological Corridor (MBC) is a region that consists of Belize, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Panama, and some southern states of Mexico. The area acts as a natural land bridge from South America to North America, which is important for species who use the bridge in migration. Due to the extensive unique habitat types, Mesoamerica contains somewhere between 7 and 10% of the world’s known species.

<span class="mw-page-title-main">Conservation development</span>

Conservation development, also known as conservation design, is a controlled-growth land use development that adopts the principle for allowing limited sustainable development while protecting the area's natural environmental features in perpetuity, including preserving open space landscape and vista, protecting farmland or natural habitats for wildlife, and maintaining the character of rural communities. A conservation development is usually defined as a project that dedicates a minimum of 50 percent of the total development parcel as open space. The management and ownership of the land are often formed by the partnership between private land owners, land-use conservation organizations and local government. It is a growing trend in many parts of the country, particularly in the Western United States. In the Eastern United States, conservation design has been promoted by some state and local governments as a technique to help preserve water quality.

Gap analysis is a tool used in wildlife conservation to identify gaps in conservation lands or other wildlands where significant plant and animal species and their habitat or important ecological features occur.

<span class="mw-page-title-main">Landscape-scale conservation</span> Holistic approach to landscape management

Landscape-scale conservation is a holistic approach to landscape management, aiming to reconcile the competing objectives of nature conservation and economic activities across a given landscape. Landscape-scale conservation may sometimes be attempted because of climate change. It can be seen as an alternative to site based conservation.

<span class="mw-page-title-main">Natural resource management</span> Management of natural resources

Natural resource management (NRM) is the management of natural resources such as land, water, soil, plants and animals, with a particular focus on how management affects the quality of life for both present and future generations (stewardship).

Ecosystem-based management is an environmental management approach that recognizes the full array of interactions within an ecosystem, including humans, rather than considering single issues, species, or ecosystem services in isolation. It can be applied to studies in the terrestrial and aquatic environments with challenges being attributed to both. In the marine realm, they are highly challenging to quantify due to highly migratory species as well as rapidly changing environmental and anthropogenic factors that can alter the habitat rather quickly. To be able to manage fisheries efficiently and effectively it has become increasingly more pertinent to understand not only the biological aspects of the species being studied, but also the environmental variables they are experiencing. Population abundance and structure, life history traits, competition with other species, where the stock is in the local food web, tidal fluctuations, salinity patterns and anthropogenic influences are among the variables that must be taken into account to fully understand the implementation of a "ecosystem-based management" approach. Interest in ecosystem-based management in the marine realm has developed more recently, in response to increasing recognition of the declining state of fisheries and ocean ecosystems. However, due to a lack of a clear definition and the diversity involved with the environment, the implementation has been lagging. In freshwater lake ecosystems, it has been shown that ecosystem-based habitat management is more effective for enhancing fish populations than management alternatives.

<span class="mw-page-title-main">Ecosystem management</span> Natural resource management

Ecosystem management is an approach to natural resource management that aims to ensure the long-term sustainability and persistence of an ecosystem's function and services while meeting socioeconomic, political, and cultural needs. Although indigenous communities have employed sustainable ecosystem management approaches implicitly for millennia, ecosystem management emerged explicitly as a formal concept in the 1990s from a growing appreciation of the complexity of ecosystems and of humans' reliance and influence on natural systems.

<span class="mw-page-title-main">IUCN protected area categories</span> International classification for protected areas

IUCN protected area categories, or IUCN protected area management categories, are categories used to classify protected areas in a system developed by the International Union for Conservation of Nature (IUCN).

Florida Ecological Greenways Network work to provide a "system of native landscapes and ecosystems that supports native plant and animal species, sustains clean air, water, fisheries, and other natural resources, and maintains the scenic natural beauty that draws people to visit and settle in Florida," as stated Florida Greenways Commission. It also functions to devise a plan for a statewide greenways system, based on GIS technology and suggestions from the public. The GIS data used includes soil, water, and geological information, wildlife movements and habitat data, as well as existing trails and parks, transportation and infrastructure fixtures, educational and historical sites, and political boundaries. This system would be created in accordance with the December 1994 report from the Florida Greenways Commission to the Governor of the state of Florida, a report which outlined the protocol for creating it. Such a system would connect all aspects of the state's "green infrastructure", making it more comprehensive for use by the state's citizens and more effective in achieving greater sustainability throughout the state of Florida for generations to come.

<span class="mw-page-title-main">Forest restoration</span>

Forest restoration is defined as “actions to re-instate ecological processes, which accelerate recovery of forest structure, ecological functioning and biodiversity levels towards those typical of climax forest” i.e. the end-stage of natural forest succession. Climax forests are relatively stable ecosystems that have developed the maximum biomass, structural complexity and species diversity that are possible within the limits imposed by climate and soil and without continued disturbance from humans. Climax forest is therefore the target ecosystem, which defines the ultimate aim of forest restoration. Since climate is a major factor that determines climax forest composition, global climate change may result in changing restoration aims. Additionally, the potential impacts of climate change on restoration goals must be taken into account, as changes in temperature and precipitation patterns may alter the composition and distribution of climax forests.

<span class="mw-page-title-main">Ecosystem health</span>

Ecosystem health is a metaphor used to describe the condition of an ecosystem. Ecosystem condition can vary as a result of fire, flooding, drought, extinctions, invasive species, climate change, mining, fishing, farming or logging, chemical spills, and a host of other reasons. There is no universally accepted benchmark for a healthy ecosystem, rather the apparent health status of an ecosystem can vary depending upon which health metrics are employed in judging it and which societal aspirations are driving the assessment. Advocates of the health metaphor argue for its simplicity as a communication tool. "Policy-makers and the public need simple, understandable concepts like health." Some critics worry that ecosystem health, a "value-laden construct", can be "passed off as science to unsuspecting policy makers and the public." However, this term is often used in portraying the state of ecosystems worldwide and in conservation and management. For example, scientific journals and the UN often use the terms planetary and ecosystem health, such as the recent journal The Lancet Planetary Health.

<span class="mw-page-title-main">Nature-based solutions</span> Sustainable management and use of nature for tackling socio-environmental challenges

Nature-based solutions (NBS) is the sustainable management and use of natural features and processes to tackle socio-environmental issues. These issues include climate change, water security, water pollution, food security, human health, biodiversity loss, and disaster risk management. The European Commission's definition of NBS states that these solutions are "inspired and supported by nature, which are cost-effective, simultaneously provide environmental, social and economic benefits and help build resilience. Such solutions bring more, and more diverse, nature and natural features and processes into cities, landscapes, and seascapes, through locally adapted, resource-efficient and systemic interventions". In 2020, the EC definition was updated to further emphasise that “Nature-based solutions must benefit biodiversity and support the delivery of a range of ecosystem services.” Through the use of NBS healthy, resilient, and diverse ecosystems can provide solutions for the benefit of both societies and overall biodiversity.

References

  1. National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Board on Atmospheric Sciences and Climate, Committee on the Evaluation of the Landscape Conservation Cooperatives (28 November 2016). A Review of the Landscape Conservation Cooperatives. National Academies Press. p. 1. ISBN   978-0-309-37985-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. Morrison, Michael L.; Rodewald, Amanda D.; Voelker, Gary; Colón, Melanie R.; Prather, Jonathan F. (3 September 2018). Ornithology: Foundation, Analysis, and Application. JHU Press. p. 770. ISBN   978-1-4214-2471-2.
  3. 1 2 3 4 BERKES, FIKRET (10 May 2004). "Rethinking Community-Based Conservation". Conservation Biology. 18 (3): 621–630. doi: 10.1111/j.1523-1739.2004.00077.x . ISSN   0888-8892.
  4. Goldman, Rebecca L.; Thompson, Barton H.; Daily, Gretchen C. (15 December 2007). "Institutional incentives for managing the landscape: Inducing cooperation for the production of ecosystem services". Ecological Economics. 64 (2): 333–343. doi:10.1016/j.ecolecon.2007.01.012. ISSN   0921-8009.
  5. 1 2 Pierce, Shirley M.; Cowling, Richard M.; Knight, Andrew T.; Lombard, Amanda T.; Rouget, Mathieu; Wolf, Trevor (1 October 2005). "Systematic conservation planning products for land-use planning: Interpretation for implementation". Biological Conservation. 125 (4): 441–458. doi:10.1016/j.biocon.2005.04.019. ISSN   0006-3207.
  6. 1 2 Angelstam, Per; Mikusiński, Grzegorz; Rönnbäck, Britt-Inger; Östman, Anders; Lazdinis, Marius; Roberge, Jean-Michel; Arnberg, Wolter; Olsson, Jan (2003). "Two-Dimensional Gap Analysis: A Tool for Efficient Conservation Planning and Biodiversity Policy Implementation". Ambio. 32 (8): 527–534. doi:10.1579/0044-7447-32.8.527. JSTOR   4315436. PMID   15049349. S2CID   198155028.
  7. Pickett, Mallory (8 April 2019). "Trump administration sabotages major conservation effort, defying Congress". the Guardian. Retrieved 8 April 2019.