Laplace functional

Last updated

In probability theory, a Laplace functional refers to one of two possible mathematical functions of functions or, more precisely, functionals that serve as mathematical tools for studying either point processes or concentration of measure properties of metric spaces. One type of Laplace functional, [1] [2] also known as a characteristic functional [lower-alpha 1] is defined in relation to a point process, which can be interpreted as random counting measures, and has applications in characterizing and deriving results on point processes. [5] Its definition is analogous to a characteristic function for a random variable.

Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of these outcomes is called an event.

Functional analysis branch of mathematical analysis concerned with infinite-dimensional topological vector spaces, often spaces of functions

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.

In statistics and probability theory, a point process or point field is a collection of mathematical points randomly located on some underlying mathematical space such as the real line, the Cartesian plane, or more abstract spaces. Point processes can be used as mathematical models of phenomena or objects representable as points in some type of space.

Contents

The other Laplace functional is for probability spaces equipped with metrics and is used to study the concentration of measure properties of the space.

In probability theory, a probability space or a probability triple is a mathematical construct that models a real-world process consisting of states that occur randomly. A probability space is constructed with a specific kind of situation or experiment in mind. One proposes that each time a situation of that kind arises, the set of possible outcomes is the same and the probabilities are also the same.

Metric (mathematics) mathematical function that defines a distance between elements of a set

In mathematics, a metric or distance function is a function that defines a distance between each pair of elements of a set. A set with a metric is called a metric space. A metric induces a topology on a set, but not all topologies can be generated by a metric. A topological space whose topology can be described by a metric is called metrizable.

In mathematics, concentration of measure is a principle that is applied in measure theory, probability and combinatorics, and has consequences for other fields such as Banach space theory. Informally, it states that "A random variable that depends in a Lipschitz way on many independent variables is essentially constant".

Definition for point processes

For a general point process defined on , the Laplace functional is defined as: [6]

where is any measurable non-negative function on and

where the notation interprets the point process as a random counting measure; see Point process notation.

In mathematics, the counting measure is an intuitive way to put a measure on any set: the "size" of a subset is taken to be: the number of elements in the subset if the subset has finitely many elements, and ∞ if the subset is infinite.

In probability and statistics, point process notation comprises the range of mathematical notation used to symbolically represent random objects known as point processes, which are used in related fields such as stochastic geometry, spatial statistics and continuum percolation theory and frequently serve as mathematical models of random phenomena, representable as points, in time, space or both.

Applications

The Laplace functional characterizes a point process, and if it is known for a point process, it can be used to prove various results. [2] [6]

Definition for probability measures

For some metric probability space (X, d, μ), where (X, d) is a metric space and μ is a probability measure on the Borel sets of (X, d), the Laplace functional:

The Laplace functional maps from the positive real line to the positive (extended) real line, or in mathematical notation:

Applications

The Laplace functional of (X, d, μ) can be used to bound the concentration function of (X, d, μ), which is defined for r > 0 by

where

The Laplace functional of (X, d, μ) then gives leads to the upper bound:

Notes

  1. Kingman [3] calls it a "characteristic functional" but Daley and Vere-Jones [2] and others call it a "Laplace functional", [1] [4] reserving the term "characteristic functional" for when is imaginary.

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz. Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, finance, engineering, and other disciplines.

In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer. It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive semi-definite kernel.

In mathematics, the Radon–Nikodym theorem is a result in measure theory. It involves a measurable space on which two σ-finite measures are defined, and . It states that, if , then there is a measurable function , such that for any measurable set ,

Laplace distribution probability distribution

In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions spliced together back-to-back, although the term is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution.

In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure μ to the sequences of moments

In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space Rn, closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss. One reason why Gaussian measures are so ubiquitous in probability theory is the central limit theorem. Loosely speaking, it states that if a random variable X is obtained by summing a large number N of independent random variables of order 1, then X is of order and its law is approximately Gaussian.

In probability theory relating to stochastic processes, a Feller process is a particular kind of Markov process.

The maximal ergodic theorem is a theorem in ergodic theory, a discipline within mathematics.

In mathematics, the Prékopa–Leindler inequality is an integral inequality closely related to the reverse Young's inequality, the Brunn–Minkowski inequality and a number of other important and classical inequalities in analysis. The result is named after the Hungarian mathematicians András Prékopa and László Leindler.

In mathematical analysis, a Besicovitch cover, named after Abram Samoilovitch Besicovitch, is an open cover of a subset E of the Euclidean space RN by balls such that each point of E is the center of some ball in the cover.

In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.

In mathematics, a càdlàg, RCLL, or corlol function is a function defined on the real numbers that is everywhere right-continuous and has left limits everywhere. Càdlàg functions are important in the study of stochastic processes that admit jumps, unlike Brownian motion, which has continuous sample paths. The collection of càdlàg functions on a given domain is known as Skorokhod space.

In probability theory and statistics, Campbell's theorem or the Campbell–Hardy theorem is either a particular equation or set of results relating to the expectation of a function summed over a point process to an integral involving the mean measure of the point process, which allows for the calculation of expected value and variance of the random sum. One version of the theorem, also known as Campbell's formula, entails an integral equation for the aforementioned sum over a general point process, and not necessarily a Poisson point process. There also exist equations involving moment measures and factorial moment measures that are considered versions of Campbell's formula. All these results are employed in probability and statistics with a particular importance in the theory of point processes and queueing theory as well as the related fields stochastic geometry, continuum percolation theory, and spatial statistics.

In the theory of renewal processes, a part of the mathematical theory of probability, the residual time or the forward recurrence time is the time between any given time and the next epoch of the renewal process under consideration. In the context of random walks, it is also known as overshoot. Another way to phrase residual time is "how much more time is there to wait?".

In probability and statistics, a moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. Moment measures generalize the idea of (raw) moments of random variables, hence arise often in the study of point processes and related fields.

In probability and statistics, a factorial moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. Moment measures generalize the idea of factorial moments, which are useful for studying non-negative integer-valued random variables.

In probability and statistics, a spherical contact distribution function, first contact distribution function, or empty space function is a mathematical function that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. More specifically, a spherical contact distribution function is defined as probability distribution of the radius of a sphere when it first encounters or makes contact with a point in a point process. This function can be contrasted with the nearest neighbour function, which is defined in relation to some point in the point process as being the probability distribution of the distance from that point to its nearest neighbouring point in the same point process.

In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field. This point process has convenient mathematical properties, which has led to it being frequently defined in Euclidean space and used as a mathematical model for seemingly random processes in numerous disciplines such as astronomy, biology, ecology, geology, seismology, physics, economics, image processing, and telecommunications.

In probability and statistics, a nearest neighbor function, nearest neighbor distance distribution, nearest-neighbor distribution function or nearest neighbor distribution is a mathematical function that is defined in relation to mathematical objects known as point processes, which are often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. More specifically, nearest neighbor functions are defined with respect to some point in the point process as being the probability distribution of the distance from this point to its nearest neighboring point in the same point process, hence they are used to describe the probability of another point existing within some distance of a point. A nearest neighbor function can be contrasted with a spherical contact distribution function, which is not defined in reference to some initial point but rather as the probability distribution of the radius of a sphere when it first encounters or makes contact with a point of a point process.

References

  1. 1 2 D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic geometry and its applications, volume 2. Wiley, 1995.
  2. 1 2 3 D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods, Springer, New York, second edition, 2003.
  3. Kingman, John (1993). Poisson Processes. Oxford Science Publications. p. 28. ISBN   0-19-853693-3.
  4. Baccelli, F. O. (2009). "Stochastic Geometry and Wireless Networks: Volume I Theory" (PDF). Foundations and Trends in Networking. 3 (3–4): 249–449. doi:10.1561/1300000006.
  5. Barrett J. F. The use of characteristic functionals and cumulant generating functionals to discuss the effect of noise in linear systems, J. Sound & Vibration 1964 vol.1, no.3, pp. 229-238
  6. 1 2 F. Baccelli and B. B{\l}aszczyszyn. Stochastic Geometry and Wireless Networks, Volume I - Theory, volume 3, No 3-4 of Foundations and Trends in Networking. NoW Publishers, 2009.