Leptospirillum ferriphilum

Last updated

Leptospirillum ferriphilum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Nitrospirota
Class: Nitrospira
Order: Nitrospirales
Family: Nitrospiraceae
Genus: Leptospirillum
Species:
L. ferriphilum
Binomial name
Leptospirillum ferriphilum
Coram & Rawlings, 2002

Leptospirillum ferriphilum is an iron-oxidising bacterium able to exist in environments of high acidity, high iron concentrations, and moderate to moderately high temperatures. [1] It is one of the species responsible for the generation of acid mine drainage [2] and the principal microbe used in industrial biohydrometallurgy processes to extract metals. [3]

Contents

Cell morphology

L. ferriphilum is a gram-negative, spiral-shaped bacterium. [4] L. ferriphilum is an acidophile and a thermotolerant bacteria allowing it to survive in extremely acidic environments and relatively high temperatures. [5] This bacterium is an aerobic organism; it can only survive and grow in an oxygenated environment. [6]

Phylogeny

Leptospirillum ferriphilum is from the domain bacteria, genus Leptosprillium, and species L. ferriphilum. [7] With analysis of the 16S rRNA gene, it was shown the G + C content is 58.5%, which closely resembles group II Leptospirilla; Group II Leptosprilla contains two rrn gene copies. [8]

Metabolic processes

Leptospirillum ferriphilum is one of the most prevalent iron oxidizers. This bacterium also fixes carbon dioxide through the reductive tricarboxylic acid (TCA) cycle. [9] L. ferriphilum fixes nitrogen through ammonium assimilation, has pH homeostasis mechanisms, has metal resistance systems, and has oxidative stress management systems. [10]

Taxonomy

L. ferriphilum is one of four known species in the Leptospirillum genus. [11] It has been identified as the primary organism active in the generation of acid mine drainage, although the species Acidithiobacillus ferrooxidans was originally described as the dominant biological catalyst for iron oxidation; L. ferriphilum and A. ferrooxidans are typically found in a 2:1 ratio. [1] The high temperature, low pH, and high ferrous iron concentration conditions associated with acidic leaching microenvironments favor L. ferriphilum.

Ecology

The Rio Tinto river in Spain is impacted by acid mine drainage. Rio tinto river CarolStoker NASA Ames Research Center.jpg
The Rio Tinto river in Spain is impacted by acid mine drainage.

L. ferriphilum is a chemolithoautotrophic and obligately anaerobic bacterium that exclusively oxidizes ferrous iron for energy. [12] Certain subtypes are classified as moderately thermophilic. In addition, this species has the ability to fix carbon dioxide, and some strains are capable of fixing nitrogen. Transcriptomics and proteomics show that L. ferriphilum utilizes the tricarboxylic acid cycle to fix carbon dioxide. The microbe is also acidophilic and employs proton pumps within its membranes to maintain its internal pH. Found in highly acidic, metal-rich environments such as the Rio Tinto river in southwest Spain, it contributes to the water's extremely low pH and reddish-orange color. [3] Due to its role in producing acid mine drainage, a major pollutant, it is linked to the acidification and degradation of some riverine and marine environments.

Biomining

L. ferriphilum is central to commercial biomining processes, where the bacteria form biofilms on ore surfaces and catalyze their dissolution via the oxidation of ferrous iron. [13] In bio-oxidation, it is typically used to separate out gold from ores. In bioleaching, it aids the separation of copper from chalcopyrite. Adhesion rates are higher with pyrite than chalcopyrite. [14] Biofilm formation in these oxidation processes is optimal between 30°C to 37°C according to one study [15] and at 41°C in another study. [11] An optimal pH of 1.4 to 1.8 has been correlated with its highest adhesion rate to sulfide metals. [11]

Related Research Articles

Bioleaching is the extraction or liberation of metals from their ores through the use of living organisms. Bioleaching is one of several applications within biohydrometallurgy and several methods are used to treat ores or concentrates containing copper, zinc, lead, arsenic, antimony, nickel, molybdenum, gold, silver, and cobalt.

<span class="mw-page-title-main">Acidobacteriota</span> Phylum of bacteria

Acidobacteriota is a phylum of Gram-negative bacteria. Its members are physiologically diverse and ubiquitous, especially in soils, but are under-represented in culture.

<i>Acidithiobacillus</i> Genus of bacteria

Acidithiobacillus is a genus of the Acidithiobacillia in the phylum "Pseudomonadota". This genus includes ten species of acidophilic microorganisms capable of sulfur and/or iron oxidation: Acidithiobacillus albertensis, Acidithiobacillus caldus, Acidithiobacillus cuprithermicus, Acidithiobacillus ferrianus, Acidithiobacillus ferridurans, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus sulfuriphilus, and Acidithiobacillus thiooxidans.A. ferooxidans is the most widely studied of the genus, but A. caldus and A. thiooxidans are also significant in research. Like all "Pseudomonadota", Acidithiobacillus spp. are Gram-negative and non-spore forming. They also play a significant role in the generation of acid mine drainage; a major global environmental challenge within the mining industry. Some species of Acidithiobacillus are utilized in bioleaching and biomining. A portion of the genes that support the survival of these bacteria in acidic environments are presumed to have been obtained by horizontal gene transfer.

<i>Ferroplasma</i> Genus of archaea

Ferroplasma is a genus of Archaea that belong to the family Ferroplasmaceae. Members of the Ferroplasma are typically acidophillic, pleomorphic, irregularly shaped cocci.

Acidophiles or acidophilic organisms are those that thrive under highly acidic conditions. These organisms can be found in different branches of the tree of life, including Archaea, Bacteria, and Eukarya.

Biomining refers to any process that uses living organisms to extract metals from ores and other solid materials. Typically these processes involve prokaryotes, however fungi and plants may also be used. Biomining is one of several applications within biohydrometallurgy with applications in ore refinement, precious metal recovery, and bioremediation. The largest application currently being used is the treatment of mining waste containing iron, copper, zinc, and gold allowing for salvation of any discarded minerals. It may also be useful in maximizing the yields of increasingly low grade ore deposits. Biomining has been proposed as a relatively environmentally friendly alternative and/or supplementation to traditional mining. Current methods of biomining are modified leach mining processes. These aptly named bioleaching processes most commonly includes the inoculation of extracted rock with bacteria and acidic solution, with the leachate salvaged and processed for the metals of value. Biomining has many applications outside of metal recovery, most notably is bioremediation which has already been used to clean up coastlines after oil spills. There are also many promising future applications, like space biomining, fungal bioleaching and biomining with hybrid biomaterials.

<span class="mw-page-title-main">Acidophiles in acid mine drainage</span>

The outflow of acidic liquids and other pollutants from mines is often catalysed by acid-loving microorganisms; these are the acidophiles in acid mine drainage.

<i>Rhodopseudomonas palustris</i> Species of bacterium

Rhodopseudomonas palustris is a rod-shaped, Gram-negative purple nonsulfur bacterium, notable for its ability to switch between four different modes of metabolism.

<i>Acidithiobacillus ferrooxidans</i> Species of bacterium

Acidithiobacillus ferrooxidans is a bacterium that sustains its life cycle at extremely low pH values, and it is one of the very few organisms that gain energy from oxidating ferrous iron. It can make copper from ores water-soluble, and it can sequester both carbon and nitrogen from the atmosphere.

<span class="mw-page-title-main">Zetaproteobacteria</span> Class of bacteria

The class Zetaproteobacteria is the sixth and most recently described class of the Pseudomonadota. Zetaproteobacteria can also refer to the group of organisms assigned to this class. The Zetaproteobacteria were originally represented by a single described species, Mariprofundus ferrooxydans, which is an iron-oxidizing neutrophilic chemolithoautotroph originally isolated from Kamaʻehuakanaloa Seamount in 1996 (post-eruption). Molecular cloning techniques focusing on the small subunit ribosomal RNA gene have also been used to identify a more diverse majority of the Zetaproteobacteria that have as yet been unculturable.

<i>Geothrix fermentans</i> Species of bacterium

Geothrix fermentans is a rod-shaped, anaerobic bacterium. It is about 0.1 μm in diameter and ranges from 2-3 μm in length. Cell arrangement occurs singly and in chains. Geothrix fermentans can normally be found in aquatic sediments such as in aquifers. As an anaerobic chemoorganotroph, this organism is best known for its ability to use electron acceptors Fe(III), as well as other high potential metals. It also uses a wide range of substrates as electron donors. Research on metal reduction by G. fermentans has contributed to understanding more about the geochemical cycling of metals in the environment.

Syntrophomonas wolfei is a bacterium. It is anaerobic, syntrophic and fatty acid-oxidizing. It has a multilayered cell wall of the gram-negative type.

<i>Acidimicrobium ferrooxidans</i> Species of bacterium

Acidimicrobium ferrooxidans is a bacterium, the type species of its genus. It is a ferrous-iron-oxidizing, moderately thermophilic and acidophilic bacterium. A complete genome of one strain, DSM 10331 isolated in Iceland from hot spring runoff water, has been resolved.

Methylocapsa acidiphila is a bacterium. It is a methane-oxidizing and dinitrogen-fixing acidophilic bacterium first isolated from Sphagnum bog. Its cells are aerobic, gram-negative, colourless, non-motile, curved coccoids that form conglomerates covered by an extracellular polysaccharide matrix. The cells use methane and methanol as sole sources of carbon and energy. B2T is the type strain.

Acidithiobacillus caldus formerly belonged to the genus Thiobacillus prior to 2000, when it was reclassified along with a number of other bacterial species into one of three new genera that better categorize sulfur-oxidizing acidophiles. As a member of the Gammaproteobacteria class of Pseudomonadota, A. caldus may be identified as a Gram-negative bacterium that is frequently found in pairs. Considered to be one of the most common microbes involved in biomining, it is capable of oxidizing reduced inorganic sulfur compounds (RISCs) that form during the breakdown of sulfide minerals. The meaning of the prefix acidi- in the name Acidithiobacillus comes from the Latin word acidus, signifying that members of this genus love a sour, acidic environment. Thio is derived from the Greek word thios and describes the use of sulfur as an energy source, and bacillus describes the shape of these microorganisms, which are small rods. The species name, caldus, is derived from the Latin word for warm or hot, denoting this species' love of a warm environment.

<i>Acidithiobacillus thiooxidans</i> Species of bacterium

Acidithiobacillus thiooxidans, formerly known as Thiobacillus thiooxidans until its reclassification into the newly designated genus Acidithiobacillus of the Acidithiobacillia subclass of Pseudomonadota, is a Gram-negative, rod-shaped bacterium that uses sulfur as its primary energy source. It is mesophilic, with a temperature optimum of 28 °C. This bacterium is commonly found in soil, sewer pipes, and cave biofilms called snottites. A. thiooxidans is used in the mining technique known as bioleaching, where metals are extracted from their ores through the action of microbes.

Dissimilatory metal-reducing microorganisms are a group of microorganisms (both bacteria and archaea) that can perform anaerobic respiration utilizing a metal as terminal electron acceptor rather than molecular oxygen (O2), which is the terminal electron acceptor reduced to water (H2O) in aerobic respiration. The most common metals used for this end are iron [Fe(III)] and manganese [Mn(IV)], which are reduced to Fe(II) and Mn(II) respectively, and most microorganisms that reduce Fe(III) can reduce Mn(IV) as well. But other metals and metalloids are also used as terminal electron acceptors, such as vanadium [V(V)], chromium [Cr(VI)], molybdenum [Mo(VI)], cobalt [Co(III)], palladium [Pd(II)], gold [Au(III)], and mercury [Hg(II)].

Acidithrix ferrooxidans is a heterotrophic, acidophilic and Gram-positive bacterium from the genus Acidithrix. The type strain of this species, A. ferrooxidans Py-F3, was isolated from an acidic stream draining from a copper mine in Wales. This species grows in a variety of acidic environments such as streams, mines or geothermal sites. Mine lakes with a redoxcline support growth with ferrous iron as the electron donor. "A. ferrooxidans" grows rapidly in macroscopic streamer, producing greater cell densities than other streamer-forming microbes. Use in a bioreactors to remediate mine waste has been proposed due to cell densities and rapid oxidation of ferrous iron oxidation in acidic mine drainage. Exopolysaccharide production during metal substrate metabolism, such as iron oxidation helps to prevent cell encrustation by minerals.

Sulfobacillus thermosulfidooxidans is a species of bacteria of the genus Sulfobacillus. It is an acidophilic, mixotrophic, moderately thermophilic, Gram-positive, sporulating facultative anaerobe. As its name suggests, it is capable of oxidizing sulfur.

<i>Sulfobacillus</i> Genus of bacteria

Sulfobacillus is a genus of bacteria containing six named species. Members of the genus are Gram-positive, acidophilic, spore-forming bacteria that are moderately thermophilic or thermotolerant. All species are facultative anaerobes capable of oxidizing sulfur-containing compounds; they differ in optimal growth temperature and metabolic capacity, particularly in their ability to grow on various organic carbon compounds.

References

  1. 1 2 Coram, N. J.; Rawlings, D. E. (2002). "Molecular Relationship between Two Groups of the Genus Leptospirillum and the Finding that Leptospirillum ferriphilum sp. nov. Dominates South African Commercial Biooxidation Tanks That Operate at 40 C". Applied and Environmental Microbiology. 68 (2): 838–845. doi:10.1128/AEM.68.2.838-845.2002. ISSN   0099-2240. PMC   126727 . PMID   11823226.
  2. Ojumu, Tunde V.; Petersen, Jochen (2011). "The kinetics of ferrous ion oxidation by Leptospirillum ferriphilum in continuous culture: The effect of pH". Hydrometallurgy. 106 (1–2): 5–11. doi:10.1016/j.hydromet.2010.11.007. ISSN   0304-386X.
  3. 1 2 García-Moyano, Antonio; González-Toril, Elena; Moreno-Paz, Mercedes; Parro, Víctor; Amils, Ricardo (2008-11-01). "Evaluation of Leptospirillum spp. in the Río Tinto, a model of interest to biohydrometallurgy". Hydrometallurgy. 17th International Biohydrometallurgy Symposium, IBS 2007, Frankfurt a.M., Germany, 2-5 September 2007. 94 (1): 155–161. doi:10.1016/j.hydromet.2008.05.046. ISSN   0304-386X.
  4. Issotta, F., Galleguillos, P.A., Moya-Beltrán, A. et al. Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile. Stand in Genomic Sci 11, 19 (2016). https://doi.org/10.1186/s40793-016-0142-1
  5. Cardenas, J. P., Lazcano, M., Ossandon, F. J., Corbett, M., Holmes, D. S., & Watkin, E. (2014). Draft Genome Sequence of the Iron-Oxidizing Acidophile Leptospirillum ferriphilum Type Strain DSM 14647. Genome Announcements, 2(6). https://doi.org/10.1128/genomea.01153-14
  6. Mi, S., Song, J., Lin, J. et al. Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation. J Microbiol. 49, 890–901 (2011). https://doi.org/10.1007/s12275-011-1099-9
  7. Coram, N. J., & Rawlings, D. E. (2002). Molecular Relationship between Two Groups of the Genus Leptospirillum and the Finding that Leptospirillum ferriphilum sp. nov. Dominates South African Commercial Biooxidation Tanks That Operate at 40°C. Applied and Environmental Microbiology, 68(2), 838–845. https://doi.org/10.1128/aem.68.2.838-845.2002
  8. Vardanyan, A., Khachatryan, A., Castro, L., Willscher, S., Gaydardzhiev, S., Zhang, R., & Vardanyan, N. (2023). Bioleaching of Sulfide Minerals by Leptospirillum ferriphilum CC from Polymetallic Mine (Armenia). Minerals, 13(2), 243. MDPI AG. http://dx.doi.org/10.3390/min13020243
  9. Christel, S., Herold, M., Sören Bellenberg, Mohamed El Hajjami, Buetti-Dinh, A., Pivkin, I. V., Sand, W., Wilmes, P., Poetsch, A., & Dopson, M. (2017). Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilum T. Applied and Environmental Microbiology, 84(3). https://doi.org/10.1128/aem.02091-17
  10. Mi, S., Song, J., Lin, J. et al. Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation. J Microbiol. 49, 890–901 (2011). https://doi.org/10.1007/s12275-011-1099-9
  11. 1 2 3 {{Cardenas, J. P., Lazcano, M., Ossandon, F. J., Corbett, M., Holmes, D. S., & Watkin, E. (2014). Draft Genome Sequence of the Iron-Oxidizing Acidophile Leptospirillum ferriphilum Type Strain DSM 14647. Genome Announcements, 2(6). https://doi.org/10.1128/genomea.01153-14Cite journal |last=Christel |first=Stephan |last2=Herold |first2=Malte |last3=Bellenberg |first3=Sören |last4=El Hajjami |first4=Mohamed |last5=Buetti-Dinh |first5=Antoine |last6=Pivkin |first6=Igor V. |last7=Sand |first7=Wolfgang |last8=Wilmes |first8=Paul |last9=Poetsch |first9=Ansgar |last10=Dopson |first10=Mark |date=2018-01-17 |title=Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilumT |url=https://journals.asm.org/doi/10.1128/aem.02091-17 |journal=Applied and Environmental Microbiology |volume=84 |issue=3 |pages=e02091–17 |doi=10.1128/AEM.02091-17 |pmc=5772234 |pmid=29150517}}
  12. name=":1"/>Christel, Stephan; Herold, Malte; Bellenberg, Sören; El Hajjami, Mohamed; Buetti-Dinh, Antoine; Pivkin, Igor V.; Sand, Wolfgang; Wilmes, Paul; Poetsch, Ansgar; Dopson, Mark (2018-01-17). "Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilumT". Applied and Environmental Microbiology. 84 (3): e02091–17. doi:10.1128/AEM.02091-17. PMC   5772234 . PMID   29150517.
  13. name=":1"/>Christel, Stephan; Herold, Malte; Bellenberg, Sören; El Hajjami, Mohamed; Buetti-Dinh, Antoine; Pivkin, Igor V.; Sand, Wolfgang; Wilmes, Paul; Poetsch, Ansgar; Dopson, Mark (2018-01-17). "Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilumT". Applied and Environmental Microbiology. 84 (3): e02091–17. doi:10.1128/AEM.02091-17. PMC   5772234 . PMID   29150517.
  14. Africa, Cindy-Jade; van Hille, Robert P.; Harrison, Susan T. L. (2013-02-01). "Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor". Applied Microbiology and Biotechnology. 97 (3): 1317–1324. doi:10.1007/s00253-012-3939-x. ISSN   1432-0614.
  15. Liu, Jie; Wu, Weijin; Zhang, Xu; Zhu, Minglong; Tan, Wensong (2017-03-10). "Adhesion properties of and factors influencing Leptospirillum ferriphilum in the biooxidation of refractory gold-bearing pyrite". International Journal of Mineral Processing. 160: 39–46. doi:10.1016/j.minpro.2017.01.001. ISSN   0301-7516.

Further reading