Lexical decision task

Last updated

The lexical decision task (LDT) is a procedure used in many psychology and psycholinguistics experiments. The basic procedure involves measuring how quickly people classify stimuli as words or nonwords.

Contents

Although versions of the task had been used by researchers for a number of years, the term lexical decision task was coined by David E. Meyer and Roger W. Schvaneveldt, who brought the task to prominence in a series of studies on semantic memory and word recognition in the early 1970s. [1] [2] [3] Since then, the task has been used in thousands of studies, investigating semantic memory and lexical access in general. [4] [5]

The task

Subjects are presented, either visually or auditorily, with a mixture of words and logatomes or pseudowords (nonsense strings that respect the phonotactic rules of a language, like trud in English). Their task is to indicate, usually with a button-press, whether the presented stimulus is a word or not.

The analysis is based on the reaction times (and, secondarily, the error rates) for the various conditions for which the words (or the pseudowords) differ. A very common effect is that of frequency: words that are more frequent are recognized faster. In a cleverly designed experiment, one can draw theoretical inferences from differences like this. [6] For instance, one might conclude that common words have a stronger mental representation than uncommon words.

Lexical decision tasks are often combined with other experimental techniques, such as priming, in which the subject is 'primed' with a certain stimulus before the actual lexical decision task has to be performed. In this way, it has been shown [1] [2] [3] that subjects are faster to respond to words when they are first shown a semantically related prime: participants are faster to confirm "nurse" as a word when it is preceded by "doctor" than when it is preceded by "butter". This is one example of the phenomenon of priming.

Lateralization in semantic processing

Lateralization of brain function is the tendency for some neural functions or cognitive processes to be more dominant in one hemisphere than the other. Studies in semantic processing have found that there is lateralization for semantic processing by investigating hemisphere deficits, which can either be lesions, damage or disease, in the medial temporal lobe. [7] Tests like the LDT that use semantic priming have found that deficits in the left hemisphere preserve summation priming while deficits in the right hemisphere preserve direct or coarse priming. [8]

Examples of summation priming include:

Examples of direct or coarse priming include:

An fMRI study found that the left hemisphere was dominant in processing the metaphorical or idiomatic interpretation of idioms whereas processing of an idiom’s literal interpretation was associated with increased activity in the right hemisphere. [9]

Other LDT studies have found that the right hemisphere is unable to recognize abstract or ambiguous nouns, verbs, or adverbs. It is, however, able to distinguish the meaning of concrete adjectives and nouns as efficiently as the left hemisphere. The same study also found that the right hemisphere is able to detect the semantic relationship between concrete nouns and their superordinate categories. [10]

Studies in right hemisphere deficits found that subjects had difficulties activating the subordinate meanings of metaphors, suggesting a selective problem with figurative meanings. [11] Bias has also been found in semantic processing with the left hemisphere more involved in semantic convergent priming, defining the dominant meaning of a word, and the right hemisphere more involved in divergent semantic priming, defining alternate meanings of a word. [12] For example, when primed with the word "bank," the left hemisphere would be bias to define it as a place where money is stored, while the right hemisphere might define it as the shore of a river. The right hemisphere may extend this and may also associate the definition of a word with other words that are related. For example, while the left hemisphere will define pig as a farm animal, the right hemisphere will also associate the word pig with farms, other farm animals like cows, and foods like pork.

Notes

  1. 1 2 Meyer, D.E.; Schvaneveldt, R.W. (1971). "Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations". Journal of Experimental Psychology. 90 (2): 227–234. doi:10.1037/h0031564. PMID   5134329.
  2. 1 2 Schvaneveldt, R.W.; Meyer, D.E. (1973), "Retrieval and comparison processes in semantic memory", in Kornblum, S. (ed.), Attention and performance IV, New York: Academic Press, pp. 395–409
  3. 1 2 Meyer, D.E.; Schvaneveldt, R.W.; Ruddy, M.G. (1975), "Loci of contextual effects on visual word recognition", in Rabbitt, P.; Dornic, S. (eds.), Attention and performance V, London: Academic Press, pp. 98–118
  4. Lucas, Margery (1999-05-01). "Context effects in lexical access: A meta-analysis". Memory & Cognition. 27 (3): 385–398. doi: 10.3758/bf03211535 . ISSN   0090-502X. PMID   10355230.
  5. Lucas, Margery (2000-12-01). "Semantic priming without association: A meta-analytic review". Psychonomic Bulletin & Review. 7 (4): 618–630. doi: 10.3758/bf03212999 . ISSN   1069-9384. PMID   11206202.
  6. Ratcliff, Roger; Gomez, Pablo; McKoon, Gail (2004). "A Diffusion Model Account of the Lexical Decision Task". Psychological Review. 111 (1): 159–182. doi:10.1037/0033-295x.111.1.159. PMC   1403837 . PMID   14756592.
  7. Kotz, Sonja A.; et al. (2002). "Modulation of the lexical–semantic network by auditory semantic priming: An event-related functional MRI study". NeuroImage. 17 (4): 1761–1772. doi:10.1006/nimg.2002.1316. hdl: 11858/00-001M-0000-0010-C767-D . PMID   12498750. S2CID   476483.
  8. Beeman, Mark; et al. (1994). "Summation priming and coarse semantic coding in the right hemisphere". Journal of Cognitive Neuroscience. 6 (1): 26–45. doi:10.1162/jocn.1994.6.1.26. PMID   23962328. S2CID   9834876.
  9. Mashal, Nira, et al. "Hemispheric differences in processing the literal interpretation of idioms: Converging evidence from behavioral and fMRI studies." cortex 44.7 (2008): 848-860.
  10. Day, James (1977). "Right-hemisphere language processing in normal right-handers". Journal of Experimental Psychology: Human Perception and Performance. 3 (3): 518–528. doi:10.1037/0096-1523.3.3.518. PMID   886282.
  11. Klepousniotou, Ekaterini; Baum, Shari R. (2005). "Processing homonymy and polysemy: Effects of sentential context and time-course following unilateral brain damage". Brain and Language. 95 (3): 365–382. doi:10.1016/j.bandl.2005.03.001. PMID   16298667. S2CID   9885576.
  12. Faust, Miriam; Lavidor, Michal (2003). "Semantically convergent and semantically divergent priming in the cerebral hemispheres: Lexical decision and semantic judgment". Cognitive Brain Research. 17 (3): 585–597. doi:10.1016/s0926-6410(03)00172-1. PMID   14561447.

Related Research Articles

Psycholinguistics or psychology of language is the study of the interrelation between linguistic factors and psychological aspects. The discipline is mainly concerned with the mechanisms by which language is processed and represented in the mind and brain; that is, the psychological and neurobiological factors that enable humans to acquire, use, comprehend, and produce language.

<span class="mw-page-title-main">Neurolinguistics</span> Neuroscience and linguistics-related studies

Neurolinguistics is the study of neural mechanisms in the human brain that control the comprehension, production, and acquisition of language. As an interdisciplinary field, neurolinguistics draws methods and theories from fields such as neuroscience, linguistics, cognitive science, communication disorders and neuropsychology. Researchers are drawn to the field from a variety of backgrounds, bringing along a variety of experimental techniques as well as widely varying theoretical perspectives. Much work in neurolinguistics is informed by models in psycholinguistics and theoretical linguistics, and is focused on investigating how the brain can implement the processes that theoretical and psycholinguistics propose are necessary in producing and comprehending language. Neurolinguists study the physiological mechanisms by which the brain processes information related to language, and evaluate linguistic and psycholinguistic theories, using aphasiology, brain imaging, electrophysiology, and computer modeling.

Semantic memory refers to general world knowledge that humans have accumulated throughout their lives. This general knowledge is intertwined in experience and dependent on culture. New concepts are learned by applying knowledge learned from things in the past.

The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. Deeper levels of analysis produce more elaborate, longer-lasting, and stronger memory traces than shallow levels of analysis. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace. There are three levels of processing in this model. Structural processing, or visual, is when we remember only the physical quality of the word E.g how the word is spelled and how letters look. Phonemic processing includes remembering the word by the way it sounds. E.G the word tall rhymes with fall. Lastly, we have semantic processing in which we encode the meaning of the word with another word that is similar of has similar meaning. Once the word is perceived, the brain allows for a deeper processing.

<span class="mw-page-title-main">Brodmann area 22</span>

Brodmann area 22 is a Brodmann's area that is cytoarchitecturally located in the posterior superior temporal gyrus of the brain. In the left cerebral hemisphere, it is one portion of Wernicke's area. The left hemisphere BA22 helps with generation and understanding of individual words. On the right side of the brain, BA22 helps to discriminate pitch and sound intensity, both of which are necessary to perceive melody and prosody. Wernicke's area is active in processing language and consists of the left Brodmann area 22 and Brodmann area 40, the supramarginal gyrus.

The N400 is a component of time-locked EEG signals known as event-related potentials (ERP). It is a negative-going deflection that peaks around 400 milliseconds post-stimulus onset, although it can extend from 250-500 ms, and is typically maximal over centro-parietal electrode sites. The N400 is part of the normal brain response to words and other meaningful stimuli, including visual and auditory words, sign language signs, pictures, faces, environmental sounds, and smells.

A pseudoword is a unit of speech or text that appears to be an actual word in a certain language, while in fact it has no meaning. It is a specific type of nonce word, or even more narrowly a nonsense word, composed of a combination of phonemes which nevertheless conform to the language's phonotactic rules. It is thus a kind of vocable: utterable but meaningless.

Tip of the tongue is the phenomenon of failing to retrieve a word or term from memory, combined with partial recall and the feeling that retrieval is imminent. The phenomenon's name comes from the saying, "It's on the tip of my tongue." The tip of the tongue phenomenon reveals that lexical access occurs in stages.

Deep dyslexia is a form of dyslexia that disrupts reading processes. Deep dyslexia may occur as a result of a head injury, stroke, disease, or operation. This injury results in the occurrence of semantic errors during reading and the impairment of nonword reading.

Indirect memory tests assess the retention of information without direct reference to the source of information. Participants are given tasks designed to elicit knowledge that was acquired incidentally or unconsciously and is evident when performance shows greater inclination towards items initially presented than new items. Performance on indirect tests may reflect contributions of implicit memory, the effects of priming, a preference to respond to previously experienced stimuli over novel stimuli. Types of indirect memory tests include the implicit association test, the lexical decision task, the word stem completion task, artificial grammar learning, word fragment completion, and the serial reaction time task.

Priming is the idea that exposure to one stimulus may influence a response to a subsequent stimulus, without conscious guidance or intention. The priming effect refers to the positive or negative effect of a rapidly presented stimulus on the processing of a second stimulus that appears shortly after. Generally speaking, the generation of priming effect depends on the existence of some positive or negative relationship between priming and target stimuli. For example, the word nurse might be recognized more quickly following the word doctor than following the word bread. Priming can be perceptual, associative, repetitive, positive, negative, affective, semantic, or conceptual. Priming effects involve word recognition, semantic processing, attention, unconscious processing, and many other issues, and are related to differences in various writing systems. Research, however, has yet to firmly establish the duration of priming effects, yet their onset can be almost instantaneous.

In psychology, implicit memory is one of the two main types of long-term human memory. It is acquired and used unconsciously, and can affect thoughts and behaviours. One of its most common forms is procedural memory, which allows people to perform certain tasks without conscious awareness of these previous experiences; for example, remembering how to tie one's shoes or ride a bicycle without consciously thinking about those activities.

The mental lexicon is defined as a mental dictionary that contains information regarding the word store of a language user, such as their meanings, pronunciations, and syntactic characteristics. The mental lexicon is used in linguistics and psycholinguistics to refer to individual speakers' lexical, or word, representations. However, there is some disagreement as to the utility of the mental lexicon as a scientific construct.

Linguistic prediction is a phenomenon in psycholinguistics occurring whenever information about a word or other linguistic unit is activated before that unit is actually encountered. Evidence from eyetracking, event-related potentials, and other experimental methods indicates that in addition to integrating each subsequent word into the context formed by previously encountered words, language users may, under certain conditions, try to predict upcoming words. In particular, prediction seems to occur regularly when the context of a sentence greatly limits the possible words that have not yet been revealed. For instance, a person listening to a sentence like, "In the summer it is hot, and in the winter it is..." would be highly likely to predict the sentence completion "cold" in advance of actually hearing it. A form of prediction is also thought to occur in some types of lexical priming, a phenomenon whereby a word becomes easier to process if it is preceded by a related word. Linguistic prediction is an active area of research in psycholinguistics and cognitive neuroscience.

Bilingual lexical access is an area of psycholinguistics that studies the activation or retrieval process of the mental lexicon for bilingual people.

Anthony Marcel is a British psychologist who contributed to the early debate on the nature of unconscious perceptual processes in the 1970s and 1980s. Marcel argued in favour of an unconscious mind that "…automatically re-describe(s) sensory data into every representational form and to the highest levels of description available to the organism.” Marcel sparked controversy with his claim to have demonstrated unconscious priming. As of 2013 Marcel was working at the University of Hertfordshire and Cambridge University where his research focused on consciousness and phenomenological experience.

Roger W. Schvaneveldt is an American experimental psychologist with a focus on basic and applied research in cognitive psychology. He earned a PhD from the University of Wisconsin–Madison in 1967 and has been on the faculties of Stony Brook University (1967–77), New Mexico State University (1977–2000), and Arizona State University (2000–10).

The word frequency effect is a psychological phenomenon where recognition times are faster for words seen more frequently than for words seen less frequently. Word frequency depends on individual awareness of the tested language. The phenomenon can be extended to different characters of the word in non-alphabetic languages such as Chinese.

In psycholinguistics, semantic processing is the stage of language processing that occurs after one hears a word and encodes its meaning: the mind relates the word to other words with similar meanings. Once a word is perceived, it is placed in a context mentally that allows for a deeper processing. Therefore, semantic processing produces memory traces that last longer than those produced by shallow processing, since shallow processing produces fragile memory traces that decay rapidly.

Debra Titone is a cognitive psychologist known for her research on bilingualism and multilingualism. She is currently a Professor of Psychology and a chair holder of Canada Research in Language & Multilingualism at McGill University. Titone is a founding member and officer of the professional society, Women in Cognitive Science. She and her colleagues have written about gender disparities in opportunities, along with the advancement of women the field of cognitive science, with specific reference to Canada.

References