Linear canonical transformation

Last updated

In Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL2(R) on the time–frequency plane (domain). As this defines the original function up to a sign, this translates into an action of its double cover on the original function space.

Contents

The LCT generalizes the Fourier, fractional Fourier, Laplace, Gauss–Weierstrass, Bargmann and the Fresnel transforms as particular cases. The name "linear canonical transformation" is from canonical transformation, a map that preserves the symplectic structure, as SL2(R) can also be interpreted as the symplectic group Sp2, and thus LCTs are the linear maps of the time–frequency domain which preserve the symplectic form, and their action on the Hilbert space is given by the Metaplectic group.

The basic properties of the transformations mentioned above, such as scaling, shift, coordinate multiplication are considered. Any linear canonical transformation is related to affine transformations in phase space, defined by time-frequency or position-momentum coordinates.

Definition

The LCT can be represented in several ways; most easily, [1] it can be parameterized by a 2×2 matrix with determinant 1, i.e., an element of the special linear group SL2(C). Then for any such matrix with ad  bc = 1, the corresponding integral transform from a function to is defined as

Special cases

Many classical transforms are special cases of the linear canonical transform:

Scaling

Scaling, , corresponds to scaling the time and frequency dimensions inversely (as time goes faster, frequencies are higher and the time dimension shrinks):

Fourier transform

The Fourier transform corresponds to a clockwise rotation by 90° in the time–frequency plane, represented by the matrix

Fractional Fourier transform

The fractional Fourier transform corresponds to rotation by an arbitrary angle; they are the elliptic elements of SL2(R), represented by the matrices

The Fourier transform is the fractional Fourier transform when The inverse Fourier transform corresponds to

Fresnel transform

The Fresnel transform corresponds to shearing, and are a family of parabolic elements, represented by the matrices

where z is distance, and λ is wavelength.

Laplace transform

The Laplace transform corresponds to rotation by 90° into the complex domain and can be represented by the matrix

Fractional Laplace transform

The fractional Laplace transform corresponds to rotation by an arbitrary angle into the complex domain and can be represented by the matrix [2]

The Laplace transform is the fractional Laplace transform when The inverse Laplace transform corresponds to

Chirp multiplication

Chirp multiplication, , corresponds to :[ citation needed ]

Composition

Composition of LCTs corresponds to multiplication of the corresponding matrices; this is also known as the additivity property of the Wigner distribution function (WDF). Occasionally the product of transforms can pick up a sign factor due to picking a different branch of the square root in the definition of the LCT. In the literature, this is called the metaplectic phase.

If the LCT is denoted by , i.e.

then

where

If is the , where is the LCT of , then

LCT is equal to the twisting operation for the WDF and the Cohen's class distribution also has the twisting operation.

We can freely use the LCT to transform the parallelogram whose center is at (0, 0) to another parallelogram which has the same area and the same center:

Transform.png

From this picture we know that the point (−1, 2) transform to the point (0, 1), and the point (1, 2) transform to the point (4, 3). As the result, we can write down the equations

Solve these equations gives (a, b, c, d) = (2, 1, 1, 1).

In optics and quantum mechanics

Paraxial optical systems implemented entirely with thin lenses and propagation through free space and/or graded-index (GRIN) media, are quadratic-phase systems (QPS); these were known before Moshinsky and Quesne (1974) called attention to their significance in connection with canonical transformations in quantum mechanics. The effect of any arbitrary QPS on an input wavefield can be described using the linear canonical transform, a particular case of which was developed by Segal (1963) and Bargmann (1961) in order to formalize Fock's (1928) boson calculus. [3]

In quantum mechanics, linear canonical transformations can be identified with the linear transformations which mix the momentum operator with the position operator and leave invariant the canonical commutation relations.

Applications

Canonical transforms are used to analyze differential equations. These include diffusion, the Schrödinger free particle, the linear potential (free-fall), and the attractive and repulsive oscillator equations. It also includes a few others such as the Fokker–Planck equation. Although this class is far from universal, the ease with which solutions and properties are found makes canonical transforms an attractive tool for problems such as these. [4]

Wave propagation through air, a lens, and between satellite dishes are discussed here. All of the computations can be reduced to 2×2 matrix algebra. This is the spirit of LCT.

Electromagnetic wave propagation

TFA LCT fresnel.jpg

Assuming the system looks like as depicted in the figure, the wave travels from the (xi, yi) plane to the (x, y) plane. The Fresnel transform is used to describe electromagnetic wave propagation in free space:

where

is the wave number,
λ is the wavelength,
z is the distance of propagation,
is the imaginary unit.

This is equivalent to LCT (shearing), when

When the travel distance (z) is larger, the shearing effect is larger.

Spherical lens

TFA LCT lens.jpg

With the lens as depicted in the figure, and the refractive index denoted as n, the result is [5]

where f is the focal length, and Δ is the thickness of the lens.

The distortion passing through the lens is similar to LCT, when

This is also a shearing effect: when the focal length is smaller, the shearing effect is larger.

Spherical mirror

TFA LCT disk.jpg

The spherical mirror—e.g., a satellite dish—can be described as a LCT, with

This is very similar to lens, except focal length is replaced by the radius R of the dish. A spherical mirror with radius curvature of R is equivalent to a thin lens with the focal length f = −R/2 (by convention, R < 0 for concave mirror, R > 0 for convex mirror). Therefore, if the radius is smaller, the shearing effect is larger.

Joint free space and spherical lens

Joint Free space and spherical lens.png

The relation between the input and output we can use LCT to represent

  1. If , it is reverse real image.
  2. If , it is Fourier transform+scaling
  3. If , it is fractional Fourier transform+scaling

Basic properties

In this part, we show the basic properties of LCT

OperatorMatrix of transform

Given a two-dimensional column vector we show some basic properties (result) for the specific input below:

InputOutputRemark
where
linearity
Parseval's theorem
where complex conjugate
multiplication
derivation
modulation
shift
where scaling
scaling
1
where

Example

TFA LCT dish2.jpg

The system considered is depicted in the figure to the right: two dishes – one being the emitter and the other one the receiver – and a signal travelling between them over a distance D. First, for dish A (emitter), the LCT matrix looks like this:

Then, for dish B (receiver), the LCT matrix similarly becomes:

Last, for the propagation of the signal in air, the LCT matrix is:

Putting all three components together, the LCT of the system is:

Relation to particle physics

It has been shown that it may be possible to establish a relation between some properties of the elementary fermion in the Standard Model of particle physics and spin representation of linear canonical transformations. [6] In this approach, the electric charge, weak hypercharge and weak isospin of the particles are expressed as linear combinations of some operators defined from the generators of the Clifford algebra associated with the spin representation of linear canonical transformations.

See also

Notes

  1. de Bruijn, N. G. (1973). "A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence", Nieuw Arch. Wiskd., III. Ser., 21, 205–280.
  2. P. R. Deshmukh & A. S. Gudadhe (2011) Convolution structure for two version of fractional Laplace transform. Journal of Science and Arts, 2(15):143–150. "CORE". Archived from the original on 2012-12-23. Retrieved 2012-08-29.
  3. K. B. Wolf (1979) Ch. 9: Canonical transforms.
  4. K. B. Wolf (1979) Ch. 9 & 10.
  5. Goodman, Joseph W. (2005), Introduction to Fourier optics (3rd ed.), Roberts and Company Publishers, ISBN   0-9747077-2-4 , §5.1.3, pp. 100–102.
  6. R. T. Ranaivoson et al (2021) Phys. Scr. 96, 065204.

Related Research Articles

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

Ray transfer matrix analysis is a mathematical form for performing ray tracing calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element is described by a 2×2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system. The same mathematics is also used in accelerator physics to track particles through the magnet installations of a particle accelerator, see electron optics.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric tensor on M consists of a metric tensor at each point p of M that varies smoothly with p.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.

In geodesy, conversion among different geographic coordinate systems is made necessary by the different geographic coordinate systems in use across the world and over time. Coordinate conversion is composed of a number of different types of conversion: format change of geographic coordinates, conversion of coordinate systems, or transformation to different geodetic datums. Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems.

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.

In linear algebra, a circulant matrix is a square matrix in which all row vectors are composed of the same elements and each row vector is rotated one element to the right relative to the preceding row vector. It is a particular kind of Toeplitz matrix.

In numerical analysis, the Crank–Nicolson method is a finite difference method used for numerically solving the heat equation and similar partial differential equations. It is a second-order method in time. It is implicit in time, can be written as an implicit Runge–Kutta method, and it is numerically stable. The method was developed by John Crank and Phyllis Nicolson in the mid 20th century.

<span class="mw-page-title-main">Fresnel diffraction</span> Diffraction

In optics, the Fresnel diffraction equation for near-field diffraction is an approximation of the Kirchhoff–Fresnel diffraction that can be applied to the propagation of waves in the near field. It is used to calculate the diffraction pattern created by waves passing through an aperture or around an object, when viewed from relatively close to the object. In contrast the diffraction pattern in the far field region is given by the Fraunhofer diffraction equation.

<span class="mw-page-title-main">Tissot's indicatrix</span> Characterization of distortion in map protections

In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

For digital image processing, the Focus recovery from a defocused image is an ill-posed problem since it loses the component of high frequency. Most of the methods for focus recovery are based on depth estimation theory. The Linear canonical transform (LCT) gives a scalable kernel to fit many well-known optical effects. Using LCTs to approximate an optical system for imaging and inverting this system, theoretically permits recovery of a defocused image.

Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

References