Link domain

Last updated
Link domain
PDB 1poz EBI.jpg
Structure of the hyaluronan-binding domain of human CD44
Identifiers
SymbolLINK
Pfam PF00193
Pfam clan CL0056
InterPro IPR000538
SMART SM00445
PROSITE PDOC00955
SCOP2 1o7b / SCOPe / SUPFAM
CDD cd01102
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

A Link domain or Link module, also known as Xlink domain (X for extracellular), is a protein domain that binds to hyaluronic acid. [1] It is important in blood cell migration and apoptosis. [2] The link domain is found in some extracellular proteins in vertebrates such as the hyalectans. [3] It appears to be involved in extracellular matrix assembly and stability, cell adhesion, and migration. [3] [4]

Contents

Structure

The structure has been shown to consist of two alpha helices and two antiparallel beta sheets arranged around a large hydrophobic core similar to that of C-type lectin. [5] This domain contains four conserved cysteines involved in two disulphide bonds. The link domain has also been termed HABM (hyaluronic acid binding module) [4] and PTR (proteoglycan tandem repeat). [6]

Proteins which contain the link domain include:

See also

Related Research Articles

<span class="mw-page-title-main">Extracellular matrix</span> Network of proteins and molecules outside cells that provides structural support for cells

In biology, the extracellular matrix (ECM), also called intercellular matrix, is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and biochemical support to surrounding cells. Because multicellularity evolved independently in different multicellular lineages, the composition of ECM varies between multicellular structures; however, cell adhesion, cell-to-cell communication and differentiation are common functions of the ECM.

<span class="mw-page-title-main">Proteoglycan</span> Class of compounds

Proteoglycans are proteins that are heavily glycosylated. The basic proteoglycan unit consists of a "core protein" with one or more covalently attached glycosaminoglycan (GAG) chain(s). The point of attachment is a serine (Ser) residue to which the glycosaminoglycan is joined through a tetrasaccharide bridge. The Ser residue is generally in the sequence -Ser-Gly-X-Gly-, although not every protein with this sequence has an attached glycosaminoglycan. The chains are long, linear carbohydrate polymers that are negatively charged under physiological conditions due to the occurrence of sulfate and uronic acid groups. Proteoglycans occur in connective tissue.

<span class="mw-page-title-main">Glycosaminoglycan</span> Polysaccharides found in animal tissue

Glycosaminoglycans (GAGs) or mucopolysaccharides are long, linear polysaccharides consisting of repeating disaccharide units. The repeating two-sugar unit consists of a uronic sugar and an amino sugar, except in the case of the sulfated glycosaminoglycan keratan, where, in place of the uronic sugar there is a galactose unit. GAGs are found in vertebrates, invertebrates and bacteria. Because GAGs are highly polar molecules and attract water; the body uses them as lubricants or shock absorbers.

<span class="mw-page-title-main">Hyaluronic acid</span> Anionic, nonsulfated glycosaminoglycan

Hyaluronic acid, also called hyaluronan, is an anionic, nonsulfated glycosaminoglycan distributed widely throughout connective, epithelial, and neural tissues. It is unique among glycosaminoglycans as it is non-sulfated, forms in the plasma membrane instead of the Golgi apparatus, and can be very large: human synovial HA averages about 7 million Da per molecule, or about 20,000 disaccharide monomers, while other sources mention 3–4 million Da.

<span class="mw-page-title-main">CD44</span> Cell-surface glycoprotein

The CD44 antigen is a cell-surface glycoprotein involved in cell–cell interactions, cell adhesion and migration. In humans, the CD44 antigen is encoded by the CD44 gene on chromosome 11. CD44 has been referred to as HCAM, Pgp-1, Hermes antigen, lymphocyte homing receptor, ECM-III, and HUTCH-1.

<span class="mw-page-title-main">Versican</span> Protein-coding gene in the species Homo sapiens

Versican is a large extracellular matrix proteoglycan that is present in a variety of human tissues. It is encoded by the VCAN gene.

<span class="mw-page-title-main">Hyaluronan synthase</span>

Hyaluronan synthases (HAS) are membrane-bound enzymes that use UDP-α-N-acetyl-D-glucosamine and UDP-α-D-glucuronate as substrates to produce the glycosaminoglycan hyaluronan at the cell surface and extrude it through the membrane into the extracellular space.

<span class="mw-page-title-main">Aggrecan</span>

Aggrecan (ACAN), also known as cartilage-specific proteoglycan core protein (CSPCP) or chondroitin sulfate proteoglycan 1, is a protein that in humans is encoded by the ACAN gene. This gene is a member of the lectican (chondroitin sulfate proteoglycan) family. The encoded protein is an integral part of the extracellular matrix in cartilagenous tissue and it withstands compression in cartilage.

<span class="mw-page-title-main">Fibulin</span>

Fibulin (FY-beau-lin) is the prototypic member of a multigene family, currently with seven members. Fibulin-1 is a calcium-binding glycoprotein. In vertebrates, fibulin-1 is found in blood and extracellular matrices. In the extracellular matrix, fibulin-1 associates with basement membranes and elastic fibers. The association with these matrix structures is mediated by its ability to interact with numerous extracellular matrix constituents including fibronectin, proteoglycans, laminins and tropoelastin. In blood, fibulin-1 binds to fibrinogen and incorporates into clots.

<span class="mw-page-title-main">ADAMTS4</span> Protein-coding gene in the species Homo sapiens

A disintegrin and metalloproteinase with thrombospondin motifs 4 is an enzyme that in humans is encoded by the ADAMTS4 gene.

<span class="mw-page-title-main">EGF-like domain</span> Protein domain named after the epidermal growth factor protein

The EGF-like domain is an evolutionary conserved protein domain, which derives its name from the epidermal growth factor where it was first described. It comprises about 30 to 40 amino-acid residues and has been found in a large number of mostly animal proteins. Most occurrences of the EGF-like domain are found in the extracellular domain of membrane-bound proteins or in proteins known to be secreted. An exception to this is the prostaglandin-endoperoxide synthase. The EGF-like domain includes 6 cysteine residues which in the epidermal growth factor have been shown to form 3 disulfide bonds. The structures of 4-disulfide EGF-domains have been solved from the laminin and integrin proteins. The main structure of EGF-like domains is a two-stranded β-sheet followed by a loop to a short C-terminal, two-stranded β-sheet. These two β-sheets are usually denoted as the major (N-terminal) and minor (C-terminal) sheets. EGF-like domains frequently occur in numerous tandem copies in proteins: these repeats typically fold together to form a single, linear solenoid domain block as a functional unit.

<span class="mw-page-title-main">Perineuronal net</span>

Perineuronal nets (PNNs) are specialized extracellular matrix structures responsible for synaptic stabilization in the adult brain. PNNs are found around certain neuron cell bodies and proximal neurites in the central nervous system. PNNs play a critical role in the closure of the childhood critical period, and their digestion can cause restored critical period-like synaptic plasticity in the adult brain. They are largely negatively charged and composed of chondroitin sulfate proteoglycans, molecules that play a key role in development and plasticity during postnatal development and in the adult.

<span class="mw-page-title-main">FBLN2</span> Protein-coding gene in the species Homo sapiens

Fibulin-2 is a protein that in humans is encoded by the FBLN2 gene.

<span class="mw-page-title-main">Hyaluronan-mediated motility receptor</span> Protein-coding gene in the species Homo sapiens

Hyaluronan-mediated motility receptor (HMMR), also known as RHAMM (Receptor for Hyaluronan Mediated Motility) is a protein which in humans is encoded by the HMMR gene. RHAMM recently has been also designated CD168 (cluster of differentiation 168).

<span class="mw-page-title-main">HAPLN1</span> Protein-coding gene in the species Homo sapiens

Hyaluronan and proteoglycan link protein 1 is a protein that in humans is encoded by the HAPLN1 gene.

<span class="mw-page-title-main">HAS1</span> Protein-coding gene in the species Homo sapiens

Hyaluronan synthase 1 is an enzyme that in humans is encoded by the HAS1 gene.

<span class="mw-page-title-main">Brevican</span> Protein-coding gene in the species Homo sapiens

Brevican core protein is a protein that in humans is encoded by the BCAN gene. Brevican is a member of the lectican protein family.

<span class="mw-page-title-main">TSG-6</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor-inducible gene 6 protein also known as TNF-stimulated gene 6 protein or TSG-6 is a protein that in humans is encoded by the TNFAIP6 gene.

Lecticans, also known as hyalectans, are a family of proteoglycans that are components of the extracellular matrix. There are four members of the lectican family: aggrecan, brevican, neurocan, and versican. Lecticans interact with hyaluronic acid and tenascin-R to form a ternary complex.

Hyaladherins, also known as hyaluronan-binding proteins, are proteins capable of binding to hyaluronic acid. Most hyaladherins belong to the Link module superfamily, including its main receptor CD44, hyalectans and TSG-6. In addition there is a diverse group of hyaladherins lacking a Link module; these include the receptor RHAMM, C1QBP (HABP1) and HABP2. The primary roles of hyaladherins are cell adhesion, structural support of the extracellular matrix (ECM) and cell signalling.

References

  1. "Link domain signature and profile". PROSITE. December 2004. Retrieved 30 September 2016.
  2. Yoneda M, Nakamura T, Murai M, Wada H (2010). "Evidence for the heparin-binding ability of the ascidian Xlink domain and insight into the evolution of the Xlink domain in chordates". J Mol Evol. 71 (1): 51–9. Bibcode:2010JMolE..71...51Y. doi:10.1007/s00239-010-9363-x. PMID   20582409. S2CID   10614265.
  3. 1 2 Hynes, RO; Naba, A (21 September 2011). "Overview of the Matrisome--An Inventory of Extracellular Matrix Constituents and Functions". Cold Spring Harbor Perspectives in Biology. 4 (1): a004903. doi:10.1101/cshperspect.a004903. PMC   3249625 . PMID   21937732.
  4. 1 2 Barta E, Deák F, Kiss I (June 1993). "Evolution of the hyaluronan-binding module of link protein". Biochem. J. 292 (3): 947–9. doi:10.1042/bj2920947. PMC   1134205 . PMID   8318021.
  5. Kohda D, Morton CJ, Parkar AA, Hatanaka H, Inagaki FM, Campbell ID, Day AJ (September 1996). "Solution structure of the link module: a hyaluronan-binding domain involved in extracellular matrix stability and cell migration". Cell. 86 (5): 767–75. doi: 10.1016/S0092-8674(00)80151-8 . PMID   8797823. S2CID   16347386.
  6. Brissett NC, Perkins SJ (June 1996). "The protein fold of the hyaluronate-binding proteoglycan tandem repeat domain of link protein, aggrecan and CD44 is similar to that of the C-type lectin superfamily". FEBS Lett. 388 (2–3): 211–6. doi: 10.1016/0014-5793(96)00576-5 . PMID   8690089. S2CID   24295651.
This article incorporates text from the public domain Pfam and InterPro: IPR000538