Lisa McElwee-White

Last updated
Lisa McElwee-White
Alma mater University of Kansas (B.S.) (1979)
California Institute of Technology (Ph.D) (1983)
Stanford University (Postdoctoral Research Affiliate) (1983-1985)
Scientific career
FieldsOrganometallic Chemistry
Institutions University of Florida
Doctoral advisor Dennis A. Dougherty and James P. Collman
Website lmwhite.chem.ufl.edu/index.html

Lisa McElwee-White is currently the Colonel Allen R. and Margaret G. Crow Professor of Chemistry at the University of Florida.

Contents

Career

Lisa McElwee-White received her B.S. degree in Chemistry from the University of Kansas in 1979, and completed her Ph.D. degree at the California Institute of Technology under the supervision of Dennis A. Dougherty. After two years of postdoctoral work at Stanford University with James P. Collman, she joined the Stanford faculty as an assistant professor in Chemistry in 1985.

She moved to the University of Florida as an associate professor in 1993 and was promoted to Professor in 1997. Following a term as Associate Dean for Administrative Affairs in the College of Liberal Arts and Sciences, she returned to full-time conducting research and teaching in 1998. She currently serves as director of the UF Beckman Scholars Program and recently served as the Director of the NSF-CCI Center for Nanostructured Electronic Materials. Professor McElwee-White's current research interests center around the applications of organometallic chemistry in materials science.

Her work has been funded by a variety of federal agencies, foundations, and private companies including NSF, DOE, ARO, ONR, NASA, ACS-PRF, the Beckman Foundation, HHMI and FEI. She has authored more than 140 peer-reviewed publications and has presented more than 180 invited lectures. Her Editorial Board service includes Organometallics, the Journal of Organic Chemistry, Letters in Organic Chemistry and Current Organic Chemistry. She has recently served as Chair of the Division of Organic Chemistry of the American Chemical Society and was named as a Fellow of the American Chemical Society in 2010. Her recent awards include the Florida Award (2015) and the Charles H. Stone Award (2012).

Research

Chemical Vapor Deposition

Precursors used in McElwee-White's research on CVD. The Precursors.png
Precursors used in McElwee-White's research on CVD.

Chemical Vapor Deposition (CVD) is a technique that produces materials by depositing solid films. It has been a very attractive process because it is chemically selective process, the material produced is high-quality and high-performing, and the thickness of the film can be easily controlled. [1]

McElwee-White has studied the various complexities of CVD on tungsten nitride and carbonitride films (WNxCy films), exploring tungsten nitrido complexes as precursors [2] [3] and analyzing the effect of ligand structure on the reaction. [4] She has also expanded her research scope to the metallization of organic thin films. For the process of metallization of organic thin films, normal thermal CVD processes which require high temperatures usually destroy organic films. McElwee-White introduced photochemical CVD processes as an alternative, and employed ruthenium-based precursors. [5]

Electron Beam-Induced Deposition

Electron beam-induced deposition (EBID) uses a high energy, focused electron beam to deposit nanomaterials onto a surface using organometallic precursors. It is useful because it is able to produce three-dimensional nanostructures with well-controlled size, shape and interparticle distance. [6] McElwee-White has explored EBID using a variety of organometallic precursors, such as cis-Pt(CO)2Cl2 to make pure platinum nanostructures [7] and (η3-C3H5)Ru(CO)3Br to make Ru-based nanostructures and to study the effects of ligands. [7] [8]

Pictorial representation of an EBID process. EBID process.png
Pictorial representation of an EBID process.

Major publications

Personal life

McElwee-White enjoys playing the flute. She was able to perform in several concerts such as the “Lobby Concert” and the “Flute Choir Showcase” with the Gainesville Flute Ensemble in the 32nd Annual Convention of the National Flute Association in August 2004.[ citation needed ]

Another hobby that she has is horseback riding. She owns several horses on her property that she loves to ride on during her free time.[ citation needed ]

Awards and honors

Her accolades include:

Related Research Articles

Chemical vapor deposition Method used to make thin films for semiconductors or surface coating

Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.

Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2.

Molybdenum hexacarbonyl Chemical compound

Molybdenum hexacarbonyl (also called molybdenum carbonyl) is the chemical compound with the formula Mo(CO)6. This colorless solid, like its chromium and tungsten analogues, is noteworthy as a volatile, air-stable derivative of a metal in its zero oxidation state.

Pentamethylcyclopentadiene Chemical compound

1,2,3,4,5-Pentamethylcyclopentadiene is a cyclic diene with the formula C5Me5H (Me = CH3). 1,2,3,4,5-Pentamethylcyclopentadiene is the precursor to the ligand 1,2,3,4,5-pentamethylcyclopentadienyl, which is often denoted Cp* (C5Me5) and read as "C P star", the "star" signifying the five methyl groups radiating from the core of the ligand. In contrast to less-substituted cyclopentadiene derivatives, Cp*H is not prone to dimerization.

Titanocene dichloride Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

Hapticity Number of contiguous atoms in a ligand that bond to the central atom in a coordination complex

In coordination chemistry, hapticity is the coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms. The hapticity of a ligand is described with the Greek letter η ('eta'). For example, η2 describes a ligand that coordinates through 2 contiguous atoms. In general the η-notation only applies when multiple atoms are coordinated. In addition, if the ligand coordinates through multiple atoms that are not contiguous then this is considered denticity, and the κ-notation is used once again. When naming complexes care should be taken not to confuse η with μ ('mu'), which relates to bridging ligands.

Tungsten hexacarbonyl Chemical compound

Tungsten hexacarbonyl (also called tungsten carbonyl) is the chemical compound with the formula W(CO)6. This complex gave rise to the first example of a dihydrogen complex.

Metal nitrosyl complex Complex of a transition metal bonded to nitric oxide: Me–NO

Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.

Electron-beam-induced deposition (EBID) is a process of decomposing gaseous molecules by an electron beam leading to deposition of non-volatile fragments onto a nearby substrate. The electron beam is usually provided by a scanning electron microscope, which results in high spatial accuracy and the possibility to produce free-standing, three-dimensional structures.

In organometallic chemistry, a transition metal indenyl complex is a coordination compound that contains one or more indenyl ligands. The indenyl ligand is formally the anion derived from deprotonation of indene. The η5-indenyl ligand is related to the η5cyclopentadienyl anion (Cp), thus indenyl analogues of many cyclopentadienyl complexes are known. Indenyl ligands lack the 5-fold symmetry of Cp, so they exhibit more complicated geometries. Furthermore, some indenyl complexes also exist with only η3-bonding mode. The η5- and η3-bonding modes sometimes interconvert.

Organoscandium chemistry Chemistry of compounds containing a carbon to scandium chemical bond

Organoscandium chemistry is an area with organometallic compounds focused on compounds with at least on carbon to scandium chemical bond. The interest in organoscandium compounds is mostly academic but motivated by potential practical applications in catalysis, especially in polymerization. A common precursor is scandium chloride, especially its THF complex.

Organomolybdenum chemistry

Organomolybdenum chemistry is the chemistry of chemical compounds with Mo-C bonds. The heavier group 6 elements molybdenum and tungsten form organometallic compounds similar to those in organochromium chemistry but higher oxidation states tend to be more common.

Rhodocene Organometallic chemical compound

Rhodocene is a chemical compound with the formula [Rh(C5H5)2]. Each molecule contains an atom of rhodium bound between two planar aromatic systems of five carbon atoms known as cyclopentadienyl rings in a sandwich arrangement. It is an organometallic compound as it has (haptic) covalent rhodium–carbon bonds. The [Rh(C5H5)2] radical is found above 150 °C (302 °F) or when trapped by cooling to liquid nitrogen temperatures (−196 °C [−321 °F]). At room temperature, pairs of these radicals join via their cyclopentadienyl rings to form a dimer, a yellow solid.

Metal nitrido complexes are coordination compounds and metal clusters that contain an atom of nitrogen bound only to transition metals. These compounds are molecular, i.e. discrete in contrast to the polymeric, dense nitride materials that are useful in materials science. The distinction between the molecular and solid-state polymers is not always very clear as illustrated by the materials Li6MoN4 and more condensed derivatives such as Na3MoN3. Transition metal nitrido complexes have attracted interest in part because it is assumed that nitrogen fixation proceeds via nitrido intermediates. Nitrido complexes have long been known, the first example being salts of [OsO3N], described in the 19th century.

Tuck-in complex

In organometallic chemistry, a tuck-in complex usually refers to derivatives of Cp* ligands wherein a methyl group is deprotonated and the resulting methylene attaches to the metal. The C5–CH2–M angle is acute. The term "tucked in" was coined to describe derivatives of organotungsten complexes. Although most "tucked-in" complexes are derived from Cp* ligands, other pi-bonded rings undergo similar reactions.

Transition metal carbyne complexes are organometallic compounds with a triple bond between carbon and the transition metal. This triple bond consists of a σ-bond and two π-bonds. The HOMO of the carbyne ligand interacts with the LUMO of the metal to create the σ-bond. The two π-bonds are formed when the two HOMO orbitals of the metal back-donate to the LUMO of the carbyne. They are also called metal alkylidynes—the carbon is a carbyne ligand. Such compounds are useful in organic synthesis of alkynes and nitriles. They have been the focus on much fundamental research.

Diiminopyridines are a class of diimine ligands. They featuring a pyridine nucleus with imine sidearms appended to the 2,6–positions. The three nitrogen centres bind metals in a tridentate fashion, forming pincer complexes. Diiminopyridines are notable as non-innocent ligand that can assume more than one oxidation state. Complexes of DIPs participate in a range of chemical reactions, including ethylene polymerization, hydrosilylation, and hydrogenation.

In organometallic chemistry, a transition metal alkyne complex is a coordination compound containing one or more alkyne ligands. Such compounds are intermediates in many catalytic reactions that convert alkynes to other organic products, e.g. hydrogenation and trimerization.

Transition-metal allyl complex

Transition-metal allyl complexes are coordination complexes with allyl and its derivatives as ligands. Allyl is the radical with the connectivity CH2CHCH2, although as a ligand it is usually viewed as an allyl anion CH2=CH−CH2, which is usually described as two equivalent resonance structures.

Metal arene complexes are organometallic compounds of the formula (C6R6)xMLy. Common classes of are of the type (C6R6)ML3 and (C6R6)2M. These compounds are reagents in inorganic and organic synthesis. The principles that describe arene complexes extend to related organic ligands such as many heterocycles (e.g. thiophene) and polycyclic aromatic compounds (e.g. naphthalene).

References

  1. 1 2 McElwee-White, Lisa (2006-11-13). "Design of precursors for the CVD of inorganic thin films". Dalton Transactions (45): 5327–5333. doi:10.1039/B611848H. ISSN   1477-9234. PMID   17102856.
  2. 1 2 McClain, K. Randall; O’Donohue, Christopher; Koley, Arijit; Bonsu, Richard O.; Abboud, Khalil A.; Revelli, Joseph C.; Anderson, Timothy J.; McElwee-White, Lisa (2014). "Tungsten Nitrido Complexes as Precursors for Low Temperature Chemical Vapor Deposition of WNxCyFilms as Diffusion Barriers for Cu Metallization". Journal of the American Chemical Society. 136 (4): 1650–1662. doi:10.1021/ja4117582. PMID   24383494.
  3. 1 2 Donohue, C. T. O; McClain, K. R.; Koley, A.; Revelli, J. C.; McElwee-White, L.; Anderson, T. J. (2015). "Low Temperature Deposition of WNxCy Diffusion Barriers Using WN(NEt2)3 as a Single-Source Precursor" (PDF). ECS Journal of Solid State Science and Technology. 4 (1): N3180–N3187. doi:10.1149/2.0251501jss. S2CID   96720822.
  4. 1 2 Koley, Arijit; O’Donohue, Christopher T.; Nolan, Michelle M.; McClain, K. Randall; Bonsu, Richard O.; Korotkov, Roman Y.; Anderson, Tim; McElwee-White, Lisa (2015-12-22). "Effect of the Ligand Structure on Chemical Vapor Deposition of WNxCy Thin Films from Tungsten Nitrido Complexes of the Type WN(NR2)3". Chemistry of Materials. 27 (24): 8326–8336. doi:10.1021/acs.chemmater.5b03691. ISSN   0897-4756.
  5. 1 2 Johnson, Kelsea R.; Arevalo Rodriguez, Paul; Brewer, Christopher R.; Brannaka, Joseph A.; Shi, Zhiwei; Yang, Jing; Salazar, Bryan; McElwee-White, Lisa; Walker, Amy V. (2017-02-07). "Photochemical CVD of Ru on functionalized self-assembled monolayers from organometallic precursors". The Journal of Chemical Physics. 146 (5): 052816. Bibcode:2017JChPh.146e2816J. doi:10.1063/1.4971434. ISSN   1089-7690. PMID   28178809.
  6. 1 2 Spencer, Julie A.; Rosenberg, Samantha G.; Barclay, Michael; Wu, Yung-Chien; McElwee-White, Lisa; Fairbrother, D. Howard (2014-12-01). "Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition". Applied Physics A. 117 (4): 1631–1644. Bibcode:2014ApPhA.117.1631S. doi:10.1007/s00339-014-8570-5. ISSN   0947-8396. S2CID   53503634.
  7. 1 2 3 Spencer, Julie A.; Wu, Yung-Chien; McElwee-White, Lisa; Fairbrother, D. Howard (2016-07-27). "Electron Induced Surface Reactions of cis-Pt(CO)2Cl2: A Route to Focused Electron Beam Induced Deposition of Pure Pt Nanostructures". Journal of the American Chemical Society. 138 (29): 9172–9182. doi: 10.1021/jacs.6b04156 . ISSN   0002-7863. PMID   27346707.
  8. 1 2 Thorman, Rachel M.; Brannaka, Joseph A.; McElwee-White, Lisa; Ingólfsson, Oddur (2017-05-24). "Low energy electron-induced decomposition of (η3-C3H5)Ru(CO)3Br, a potential focused electron beam induced deposition precursor with a heteroleptic ligand set". Physical Chemistry Chemical Physics. 19 (20): 13264–13271. Bibcode:2017PCCP...1913264T. doi:10.1039/C7CP01696D. ISSN   1463-9084. PMID   28492652.
  9. Spencer, Julie A.; Brannaka, Joseph A.; Barclay, Michael; McElwee-White, Lisa; Fairbrother, D. Howard (2015-07-09). "Electron-Induced Surface Reactions of η3-Allyl Ruthenium Tricarbonyl Bromide [(η3-C3H5)Ru(CO)3Br]: Contrasting the Behavior of Different Ligands". The Journal of Physical Chemistry C. 119 (27): 15349–15359. doi:10.1021/acs.jpcc.5b03775. ISSN   1932-7447.
  10. "UF Office of Technology Licensing" (PDF). UF Office of Technology Licensing. Retrieved 31 May 2017.
  11. "G.B. Frost Memorial Lecture" (PDF).
  12. "Inventors Reception". American Chemical Society-Florida Section. Retrieved 31 May 2017.