List of transitive finite linear groups

Last updated

In mathematics, especially in areas of abstract algebra and finite geometry, the list of transitive finite linear groups is an important classification of certain highly symmetric actions of finite groups on vector spaces.

Contents

The solvable finite 2-transitive groups were classified by Bertram Huppert. [1] The classification of finite simple groups made possible the complete classification of finite doubly transitive permutation groups. This is a result by Christoph Hering. [2] A finite 2-transitive group has a socle that is either a vector space over a finite field or a non-abelian primitive simple group; groups of the latter kind are almost simple groups and described elsewhere. This article provides a complete list of the finite 2-transitive groups whose socle is elementary abelian.

Let be a prime, and a subgroup of the general linear group acting transitively on the nonzero vectors of the d-dimensional vector space over the finite field with p elements.

Infinite classes

There are four infinite classes of finite transitive linear groups.

Notice that the exceptional group of Lie type G2(q) is usually constructed as the automorphism groups of the split octonions. Hence, it has a natural representation as a subgroup of the 7-dimensional orthogonal group O(7, q). If q is even, then the underlying quadratic form polarizes to a degenerate symplectic form. Factoring out with the radical, one obtains an isomorphism between O(7, q) and the symplectic group Sp(6, q). The subgroup of Sp(6, q) which corresponds to G2(q)′ is transitive.

In fact, for q>2, the group G2(q) = G2(q)′ is simple. If q=2 then G2(2)′ ≅ PSU(3,3) is simple with index 2 in G2(2).

Sporadic finite transitive linear groups

These groups are usually classified by some typical normal subgroup, this normal subgroup is denoted by G0 and are written in the third column of the table. The notation 21+4 stands for the extraspecial group of minus type of order 32 (i.e. the extraspecial group of order 32 with an odd number (namely one) of quaternion factor).

All but one of the sporadic transitive linear groups yield a primitive permutation group of degree at most 2499. In the computer algebra programs GAP and MAGMA, these groups can be accessed with the command PrimitiveGroup(p^d,k); where the number k is the primitive identification of . This number is given in the last column of the following table.

Seven of these groups are sharply transitive; these groups were found by Hans Zassenhaus and are also known as the multiplicative groups of the Zassenhaus near-fields. These groups are marked by a star in the table.

Condition on Condition on Primitive identification of
15*, 18, 19
25*, 29
39*, 42
59*
56*, 57
86
106*, 110
84*
16, 17
20
124, 126, 127, 128
71, 90, 99, 129, 130
62, 63
396

This list is not explicitly contained in Hering's paper. Many books [3] [4] and papers give a list of these groups, some of them an incomplete one. For example, Cameron's book [5] misses the groups in line 11 of the table, that is, containing as a normal subgroup.

Related Research Articles

<span class="mw-page-title-main">Lie algebra</span> Algebraic structure used in analysis

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact.

In mathematics, and in particular the theory of group representations, the regular representation of a group G is the linear representation afforded by the group action of G on itself by translation.

<span class="mw-page-title-main">Mathieu group</span> Five sporadic simple groups

In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups M11, M12, M22, M23 and M24 introduced by Mathieu. They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They are the first sporadic groups to be discovered.

<span class="mw-page-title-main">Projective linear group</span> Construction in group theory

In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group

In mathematics, a generalized flag variety is a homogeneous space whose points are flags in a finite-dimensional vector space V over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth or complex manifold, called a real or complexflag manifold. Flag varieties are naturally projective varieties.

<span class="mw-page-title-main">Reductive group</span>

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.

<span class="mw-page-title-main">Frobenius group</span>

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

In mathematics, a Zassenhaus group, named after Hans Zassenhaus, is a certain sort of doubly transitive permutation group very closely related to rank-1 groups of Lie type.

In mathematics, a Ree group is a group of Lie type over a finite field constructed by Ree from an exceptional automorphism of a Dynkin diagram that reverses the direction of the multiple bonds, generalizing the Suzuki groups found by Suzuki using a different method. They were the last of the infinite families of finite simple groups to be discovered.

In mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group.

Janko group J<sub>1</sub>

In the area of modern algebra known as group theory, the Janko groupJ1 is a sporadic simple group of order

In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups:

A group acts 2-transitively on a set if it acts transitively on the set of distinct ordered pairs . That is, assuming that acts on the left of , for each pair of pairs with and , there exists a such that .

In the area of modern algebra known as group theory, the Suzuki groups, denoted by Sz(22n+1), 2B2(22n+1), Suz(22n+1), or G(22n+1), form an infinite family of groups of Lie type found by Suzuki, that are simple for n ≥ 1. These simple groups are the only finite non-abelian ones with orders not divisible by 3.

In mathematical finite group theory, the Dempwolff group is a finite group of order 319979520 = 215·32·5·7·31, that is the unique nonsplit extension of by its natural module of order . The uniqueness of such a nonsplit extension was shown by Dempwolff (1972), and the existence by Thompson (1976), who showed using some computer calculations of Smith (1976) that the Dempwolff group is contained in the compact Lie group as the subgroup fixing a certain lattice in the Lie algebra of , and is also contained in the Thompson sporadic group (the full automorphism group of this lattice) as a maximal subgroup.

In mathematical finite group theory, a rank 3 permutation group acts transitively on a set such that the stabilizer of a point has 3 orbits. The study of these groups was started by Higman. Several of the sporadic simple groups were discovered as rank 3 permutation groups.

In mathematics, the O'Nan–Scott theorem is one of the most influential theorems of permutation group theory; the classification of finite simple groups is what makes it so useful. Originally the theorem was about maximal subgroups of the symmetric group. It appeared as an appendix to a paper by Leonard Scott written for The Santa Cruz Conference on Finite Groups in 1979, with a footnote that Michael O'Nan had independently proved the same result. Michael Aschbacher and Scott later gave a corrected version of the statement of the theorem.

References

  1. Huppert, Bertram (1957), "Zweifach transitive, auflösbare Permutationsgruppen", Mathematische Zeitschrift , 68: 126–150, doi:10.1007/BF01160336, ISSN   0025-5874, MR   0094386
  2. Hering, Christoph (1985), "Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II", Journal of Algebra, 93 (1): 151–164, doi: 10.1016/0021-8693(85)90179-6 , ISSN   0021-8693, MR   0780488
  3. Huppert, Bertram; Blackburn, Norman (1982), Finite groups. III., Grundlehren der Mathematischen Wissenschaften, vol. 243, Berlin-New York: Springer-Verlag, ISBN   3-540-10633-2, MR   0650245
  4. Johnson, Norman L.; Jha, Vikram; Biliotti, Mauro (2007), Handbook of finite translation planes, Pure and Applied Mathematics, vol. 289, Boca Raton: Chapman & Hall/CRC, ISBN   978-1-58488-605-1, MR   2290291
  5. Cameron, Peter J. (1999), Permutation Groups , London Mathematical Society Student Texts, vol. 45, Cambridge University Press, ISBN   978-0-521-65378-7